Advertisement

Long noncoding RNAs: from genomic junk to rising stars in the early detection of cancer

  • Rebeca Miranda-CastroEmail author
  • Noemí de-los-Santos-Álvarez
  • María Jesús Lobo-Castañón
Trends
  • 198 Downloads
Part of the following topical collections:
  1. Young Investigators in (Bio-)Analytical Chemistry

Abstract

Despite having been underappreciated in favor of their protein-coding counterparts for a long time, long noncoding RNAs (lncRNAs) have emerged as functional molecules, which defy the central dogma of molecular biology, with clear implications in cancer. Altered expression levels of some of these large transcripts in human body fluids have been related to different cancer conditions that turns them into potential noninvasive cancer biomarkers. In this review, a brief discussion about the importance and current challenges in the determination of lncRNAs associated to cancer is provided. Different electrochemical nucleic acid-based strategies for lncRNAs detection are critically described. Future perspectives and remaining challenges for the practical implementation of these methodologies in clinical medicine are also discussed.

Keywords

Long noncoding RNA Tumor biomarkers Liquid biopsy Electrochemical biosensors Molecular diagnosis 

Notes

Funding information

The authors acknowledge the financial support from the Spanish Ministerio de Economía y Competitividad (project no. CTQ2015-63567-R, co-financed by FEDER funds).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    http://www.who.int/cancer/en. (last accessed 13-11-2018).
  2. 2.
    Stewart BW, Wild CP, editors. World cancer report 2014. Lyon: International Agency for Research on Cancer; 2014.Google Scholar
  3. 3.
    Dong H, Lei J, Ding L, Wen Y, Ju H, Zhang X. MicroRNA: function, detection, and bioanalysis. Chem Rev. 2013;113:6207–33.CrossRefGoogle Scholar
  4. 4.
    Wang KC, Chang HY. Molecular mechanisms of long noncoding RNAs. Mol Cell. 2011;43(6):904–14.CrossRefGoogle Scholar
  5. 5.
    Iyer MK, et al. The landscape of long noncoding RNAs in the human transcriptome. Nat Genet. 2015;47(3):199–208.CrossRefGoogle Scholar
  6. 6.
    Wan P, Su W, Zhuo Y. The role of long noncoding RNAs in neurodegenerative diseases. Mol Neurobiol. 2017;54(3):2012–21.CrossRefGoogle Scholar
  7. 7.
    Zuo L, Tan Y, Wang Z, Wang K-S, Zhang X, Chem Z, et al. Long non-coding RNAs in psychiatric disorders. Psychiatr Genet. 2016;26(3):109–16.CrossRefGoogle Scholar
  8. 8.
    Zhang H, Chen Z, Wang X, Huang Z, He Z, Chen Y. Long non-coding RNA: a new player in cancer. J Hematol Oncol. 2013;6:37.CrossRefGoogle Scholar
  9. 9.
    Chandra Gupta S, Nandan Tripathi Y. Potential of long non-coding RNAs in cancer patients: from biomarkers to therapeutic targets. Int J Cancer. 2017;140(9):1955–67.CrossRefGoogle Scholar
  10. 10.
    Barbagallo C, Brex D, Caponnetto A, Cirnigliaro M, Scalia M, Magnano A, et al. LncRNA UCA1, upregulated in CRC biopsies and downregulated in serum exosomes, controls mRNA expression by RNA-RNA interactions. Mol Ther-Nucleic Acids. 2018;12:229–41.CrossRefGoogle Scholar
  11. 11.
    Bolha L, Ravnik-Glavač M, Glavač D. Long noncoding RNAs as biomarkers in cancer. Dis Markers. 2017;2017:7243968.CrossRefGoogle Scholar
  12. 12.
    Bhan A, Soleimani M, Mandal SS. Long noncoding RNA and cancer: a new paradigm. Cancer Res. 2017;77(15):3965–81.CrossRefGoogle Scholar
  13. 13.
    Sartori DA, Chan DW. Biomarkers in prostate cancer: what’s new? Opin Oncologia. 2014;26(3):259–64.CrossRefGoogle Scholar
  14. 14.
    Lee GL, Dobi A, Srivastava S. Prostate cancer: diagnostic performance of the PCA3 urine test. Nat Rev Urol. 2011;8:123–4.CrossRefGoogle Scholar
  15. 15.
    Bellassai N, Spotto G. Biosensors for liquid biopsy: circulating nucleic acids to diagnose and treat cancer. Anal Bioanal Chem. 2016;408:7255–64.CrossRefGoogle Scholar
  16. 16.
    D’Agata R, Giuffrida MC, Spoto G. Peptide nucleic acid-based biosensors for cancer diagnosis. Molecules. 2017;22:1951.CrossRefGoogle Scholar
  17. 17.
    Vasilyeva E, Lam B, Fang Z, Minden MD, Sargent EH, Kelley SO. Direct genetic analysis of ten cancer cells: tuning sensor structure and molecular probe design for efficient mRNA capture. Angew Chem Int Ed Eng. 2011;50(18):4137–41.CrossRefGoogle Scholar
  18. 18.
    Tercero N, Wang K, Gong P, Levicky R. Morpholino monolayers: preparation and label-free DNA analysis by surface hybridization. J Am Chem Soc. 2009;131(13):4953–61.CrossRefGoogle Scholar
  19. 19.
    Liao T, Li X, Tong Q, Zou K, Zhang H, Tang L, et al. Ultrasensitive detection of microRNAs with morpholino-functionalized nanochannel biosensor. Anal Chem. 2017;89(10):5511–8.CrossRefGoogle Scholar
  20. 20.
    Li Q, Shao Y, Zhang X, Zheng T, Miao M, Qin L, et al. Plasma long noncoding RNA protected by exosomes as a potential stable biomarker for gastric cancer. Tumor Biol. 2015;36(3):2007–12.CrossRefGoogle Scholar
  21. 21.
    Soleymani L, Fang Z, Lam B, Bin X, Vasilyeva E, Ross AJ, et al. Hierarchical nanotextured microelectrodes overcome the molecular transport barrier to achieve rapid, direct bacterial detection. ACS Nano. 2011;5(4):3360–6.CrossRefGoogle Scholar
  22. 22.
    Yamada A, Yu P, Lin W, Okugawa Y, Boland CR, Goel AA. RNA-sequencing approach for the identification of novel long non-coding RNA biomarkers in colorectal cancer. Sci Rep. 2018;8:575.CrossRefGoogle Scholar
  23. 23.
    Liu Y, Liu Y, Qiao L, Liu Y, Liu B. Advances in signal amplification strategies for electrochemical biosensing. Curr Opin Electrochem. 2018;12:5–12.CrossRefGoogle Scholar
  24. 24.
    Liu F, Xiang G, Jiang D, Zhang L, Chen X, Liu L, et al. Ultrasensitive strategy based on PtPd nanodendrite/nano-flower-like@GO signal amplification for the detection of long non-coding RNA. Biosens Bioelectron. 2015;74:214–21.CrossRefGoogle Scholar
  25. 25.
    Wharam SD, Marsh P, Lloyd JS, Ray TD, Mock GA, Assenberg R, et al. Specific detection of DNA and RNA targets using a novel isothermal nucleic acid amplification assay based on the formation of a three-way junction structure. Nucleic Acids Res. 2001;29(11):E54.CrossRefGoogle Scholar
  26. 26.
    Dirks RM, Pierce NA. Triggered amplification by hybridization chain reaction. Proc Natl Acad Sci U S A. 2004;101(43):15275–8.CrossRefGoogle Scholar
  27. 27.
    Saiki RK, Scharf S, Faloona F, Mullis KB, Horn GT, Erlich HA, et al. Science. 1985;230(4732):1350–4.CrossRefGoogle Scholar
  28. 28.
    Cardenosa-Rubio MC, Graybill RM, Bailey RC. Combining asymmetric PCR-based enzymatic amplification with silicon photonic microring resonators for the detection of lncRNAs from low input human RNA samples. Analyst. 2018;143:1210–6.CrossRefGoogle Scholar
  29. 29.
    Qi H, Yue S, Bi S, Ding C, Song W. Isothermal exponential amplification techniques: from basic principles to applications in electrochemical biosensors. Biosens Bioelectron. 2018;110:207–17.CrossRefGoogle Scholar
  30. 30.
    Piepenburg O, Williams CH, Stemple DL, Armes NA. DNA detection using recombination proteins. PLoS Biol. 2006;4:e204.CrossRefGoogle Scholar
  31. 31.
    Islam MN, Moriam S, Umer M, Phan H-P, Salomon C, Kline R, et al. Naked-eye and electrochemical detection of isothermally amplified HOTAIR long non-coding RNA. Analyst. 2018;143:3021–8.CrossRefGoogle Scholar
  32. 32.
    Nugen SR, Asiello PJ, Connelly JT, Baeumner AJ. PMMA biosensor for nucleic acids with integrated mixer and electrochemical detection. Biosens Bioelectron. 2009;24(8):2428–33.CrossRefGoogle Scholar
  33. 33.
    Gerasimova YV, Kolpashchikov DM. Enzyme-assisted target recycling (EATR) for nucleic acid detection. Chem Soc Rev. 2014;43:6405–38.CrossRefGoogle Scholar
  34. 34.
    Li X-M, Wang L-L, Luo J, Wei Q-L. A dual-amplified electrochemical detection of mRNA based on duplex-specific nuclease and bio-bar-code conjugates. Biosens Bioelectron. 2015;65:245–50.CrossRefGoogle Scholar
  35. 35.
    Li X, Peng G, Cui F, Qiu Q, Chen X, Huang H. Double determination of long noncoding RNAs from lung cancer via multiamplified electrochemical genosensor at sub-femtomole level. Biosens Bioelectron. 2018;113:116–23.CrossRefGoogle Scholar
  36. 36.
    Cheng H, Liu J, Ma W, Duan S, Huang J, He X, et al. Low background cascade signal amplification electrochemical sensing platform for tumor-related mRNA quantification by target activated hybridization chain reaction and electroactive cargo release. Anal Chem. 2018;90(21):12544–52.CrossRefGoogle Scholar
  37. 37.
    Liu J, Wang J, Song Y, Ma B, Luo J, Ni Z, et al. A panel consisting of three novel circulating lncRNAs, is it a predictive tool for gastric cancer? J Cell Mol Med. 2018;22(7):3605–13.CrossRefGoogle Scholar
  38. 38.
    Hu HB, Jie HY, Zheng XX. Three circulating lncRNA predict early progress of esophageal squamous cell carcinoma. Cell Physiol Biochem. 2016;40(1–2):117–25.CrossRefGoogle Scholar
  39. 39.
    Wang C, Yu J, Han Y, Li L, Li J, Li T, et al. Long non-coding RNAs LOC285194, RP11-462C24.1 and Nbla12061 in serum provide a new approach for distinguishing patients with colorectal cancer from healthy controls. Oncotarget. 2016;7(43):70769–78.Google Scholar
  40. 40.
    Mayboroda O, Katakis I, O’Sullivan CK. Multiplexed isothermal nucleic acid amplification. Anal Biochem. 2018;545:20–30.CrossRefGoogle Scholar
  41. 41.
    Shi T, Gao G, Cao Y. Long noncoding RNAs as novel biomarkers have a promising future in cancer diagnostics. Dis Markers. 2016;2018:9085195.Google Scholar
  42. 42.
    Arun G, Diermeier SD, Spector DL. Therapeutic targeting of long non-coding RNAs in cancer. Trends Mol Med. 2018;24(3):257–77.CrossRefGoogle Scholar
  43. 43.
    Abudayyeh OO, Gootenberg JS, Essletzbichler P, Han S, Joung J, Belanto JJ, et al. RNA targeting with CRISPR-Cas13a. Nature. 2017;550:280–4.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Rebeca Miranda-Castro
    • 1
    • 2
    Email author
  • Noemí de-los-Santos-Álvarez
    • 1
    • 2
  • María Jesús Lobo-Castañón
    • 1
    • 2
  1. 1.Dpto. Química Física y AnalíticaUniversidad de OviedoOviedoSpain
  2. 2.Instituto de Investigación Sanitaria del Principado de AsturiasOviedoSpain

Personalised recommendations