Long noncoding RNAs: from genomic junk to rising stars in the early detection of cancer
- 119 Downloads
Abstract
Despite having been underappreciated in favor of their protein-coding counterparts for a long time, long noncoding RNAs (lncRNAs) have emerged as functional molecules, which defy the central dogma of molecular biology, with clear implications in cancer. Altered expression levels of some of these large transcripts in human body fluids have been related to different cancer conditions that turns them into potential noninvasive cancer biomarkers. In this review, a brief discussion about the importance and current challenges in the determination of lncRNAs associated to cancer is provided. Different electrochemical nucleic acid-based strategies for lncRNAs detection are critically described. Future perspectives and remaining challenges for the practical implementation of these methodologies in clinical medicine are also discussed.
Keywords
Long noncoding RNA Tumor biomarkers Liquid biopsy Electrochemical biosensors Molecular diagnosisNotes
Funding information
The authors acknowledge the financial support from the Spanish Ministerio de Economía y Competitividad (project no. CTQ2015-63567-R, co-financed by FEDER funds).
Compliance with ethical standards
Conflict of interest
The authors declare that they have no conflict of interest.
References
- 1.http://www.who.int/cancer/en. (last accessed 13-11-2018).
- 2.Stewart BW, Wild CP, editors. World cancer report 2014. Lyon: International Agency for Research on Cancer; 2014.Google Scholar
- 3.Dong H, Lei J, Ding L, Wen Y, Ju H, Zhang X. MicroRNA: function, detection, and bioanalysis. Chem Rev. 2013;113:6207–33.CrossRefGoogle Scholar
- 4.Wang KC, Chang HY. Molecular mechanisms of long noncoding RNAs. Mol Cell. 2011;43(6):904–14.CrossRefGoogle Scholar
- 5.Iyer MK, et al. The landscape of long noncoding RNAs in the human transcriptome. Nat Genet. 2015;47(3):199–208.CrossRefGoogle Scholar
- 6.Wan P, Su W, Zhuo Y. The role of long noncoding RNAs in neurodegenerative diseases. Mol Neurobiol. 2017;54(3):2012–21.CrossRefGoogle Scholar
- 7.Zuo L, Tan Y, Wang Z, Wang K-S, Zhang X, Chem Z, et al. Long non-coding RNAs in psychiatric disorders. Psychiatr Genet. 2016;26(3):109–16.CrossRefGoogle Scholar
- 8.Zhang H, Chen Z, Wang X, Huang Z, He Z, Chen Y. Long non-coding RNA: a new player in cancer. J Hematol Oncol. 2013;6:37.CrossRefGoogle Scholar
- 9.Chandra Gupta S, Nandan Tripathi Y. Potential of long non-coding RNAs in cancer patients: from biomarkers to therapeutic targets. Int J Cancer. 2017;140(9):1955–67.CrossRefGoogle Scholar
- 10.Barbagallo C, Brex D, Caponnetto A, Cirnigliaro M, Scalia M, Magnano A, et al. LncRNA UCA1, upregulated in CRC biopsies and downregulated in serum exosomes, controls mRNA expression by RNA-RNA interactions. Mol Ther-Nucleic Acids. 2018;12:229–41.CrossRefGoogle Scholar
- 11.Bolha L, Ravnik-Glavač M, Glavač D. Long noncoding RNAs as biomarkers in cancer. Dis Markers. 2017;2017:7243968.CrossRefGoogle Scholar
- 12.Bhan A, Soleimani M, Mandal SS. Long noncoding RNA and cancer: a new paradigm. Cancer Res. 2017;77(15):3965–81.CrossRefGoogle Scholar
- 13.Sartori DA, Chan DW. Biomarkers in prostate cancer: what’s new? Opin Oncologia. 2014;26(3):259–64.CrossRefGoogle Scholar
- 14.Lee GL, Dobi A, Srivastava S. Prostate cancer: diagnostic performance of the PCA3 urine test. Nat Rev Urol. 2011;8:123–4.CrossRefGoogle Scholar
- 15.Bellassai N, Spotto G. Biosensors for liquid biopsy: circulating nucleic acids to diagnose and treat cancer. Anal Bioanal Chem. 2016;408:7255–64.CrossRefGoogle Scholar
- 16.D’Agata R, Giuffrida MC, Spoto G. Peptide nucleic acid-based biosensors for cancer diagnosis. Molecules. 2017;22:1951.CrossRefGoogle Scholar
- 17.Vasilyeva E, Lam B, Fang Z, Minden MD, Sargent EH, Kelley SO. Direct genetic analysis of ten cancer cells: tuning sensor structure and molecular probe design for efficient mRNA capture. Angew Chem Int Ed Eng. 2011;50(18):4137–41.CrossRefGoogle Scholar
- 18.Tercero N, Wang K, Gong P, Levicky R. Morpholino monolayers: preparation and label-free DNA analysis by surface hybridization. J Am Chem Soc. 2009;131(13):4953–61.CrossRefGoogle Scholar
- 19.Liao T, Li X, Tong Q, Zou K, Zhang H, Tang L, et al. Ultrasensitive detection of microRNAs with morpholino-functionalized nanochannel biosensor. Anal Chem. 2017;89(10):5511–8.CrossRefGoogle Scholar
- 20.Li Q, Shao Y, Zhang X, Zheng T, Miao M, Qin L, et al. Plasma long noncoding RNA protected by exosomes as a potential stable biomarker for gastric cancer. Tumor Biol. 2015;36(3):2007–12.CrossRefGoogle Scholar
- 21.Soleymani L, Fang Z, Lam B, Bin X, Vasilyeva E, Ross AJ, et al. Hierarchical nanotextured microelectrodes overcome the molecular transport barrier to achieve rapid, direct bacterial detection. ACS Nano. 2011;5(4):3360–6.CrossRefGoogle Scholar
- 22.Yamada A, Yu P, Lin W, Okugawa Y, Boland CR, Goel AA. RNA-sequencing approach for the identification of novel long non-coding RNA biomarkers in colorectal cancer. Sci Rep. 2018;8:575.CrossRefGoogle Scholar
- 23.Liu Y, Liu Y, Qiao L, Liu Y, Liu B. Advances in signal amplification strategies for electrochemical biosensing. Curr Opin Electrochem. 2018;12:5–12.CrossRefGoogle Scholar
- 24.Liu F, Xiang G, Jiang D, Zhang L, Chen X, Liu L, et al. Ultrasensitive strategy based on PtPd nanodendrite/nano-flower-like@GO signal amplification for the detection of long non-coding RNA. Biosens Bioelectron. 2015;74:214–21.CrossRefGoogle Scholar
- 25.Wharam SD, Marsh P, Lloyd JS, Ray TD, Mock GA, Assenberg R, et al. Specific detection of DNA and RNA targets using a novel isothermal nucleic acid amplification assay based on the formation of a three-way junction structure. Nucleic Acids Res. 2001;29(11):E54.CrossRefGoogle Scholar
- 26.Dirks RM, Pierce NA. Triggered amplification by hybridization chain reaction. Proc Natl Acad Sci U S A. 2004;101(43):15275–8.CrossRefGoogle Scholar
- 27.Saiki RK, Scharf S, Faloona F, Mullis KB, Horn GT, Erlich HA, et al. Science. 1985;230(4732):1350–4.CrossRefGoogle Scholar
- 28.Cardenosa-Rubio MC, Graybill RM, Bailey RC. Combining asymmetric PCR-based enzymatic amplification with silicon photonic microring resonators for the detection of lncRNAs from low input human RNA samples. Analyst. 2018;143:1210–6.CrossRefGoogle Scholar
- 29.Qi H, Yue S, Bi S, Ding C, Song W. Isothermal exponential amplification techniques: from basic principles to applications in electrochemical biosensors. Biosens Bioelectron. 2018;110:207–17.CrossRefGoogle Scholar
- 30.Piepenburg O, Williams CH, Stemple DL, Armes NA. DNA detection using recombination proteins. PLoS Biol. 2006;4:e204.CrossRefGoogle Scholar
- 31.Islam MN, Moriam S, Umer M, Phan H-P, Salomon C, Kline R, et al. Naked-eye and electrochemical detection of isothermally amplified HOTAIR long non-coding RNA. Analyst. 2018;143:3021–8.CrossRefGoogle Scholar
- 32.Nugen SR, Asiello PJ, Connelly JT, Baeumner AJ. PMMA biosensor for nucleic acids with integrated mixer and electrochemical detection. Biosens Bioelectron. 2009;24(8):2428–33.CrossRefGoogle Scholar
- 33.Gerasimova YV, Kolpashchikov DM. Enzyme-assisted target recycling (EATR) for nucleic acid detection. Chem Soc Rev. 2014;43:6405–38.CrossRefGoogle Scholar
- 34.Li X-M, Wang L-L, Luo J, Wei Q-L. A dual-amplified electrochemical detection of mRNA based on duplex-specific nuclease and bio-bar-code conjugates. Biosens Bioelectron. 2015;65:245–50.CrossRefGoogle Scholar
- 35.Li X, Peng G, Cui F, Qiu Q, Chen X, Huang H. Double determination of long noncoding RNAs from lung cancer via multiamplified electrochemical genosensor at sub-femtomole level. Biosens Bioelectron. 2018;113:116–23.CrossRefGoogle Scholar
- 36.Cheng H, Liu J, Ma W, Duan S, Huang J, He X, et al. Low background cascade signal amplification electrochemical sensing platform for tumor-related mRNA quantification by target activated hybridization chain reaction and electroactive cargo release. Anal Chem. 2018;90(21):12544–52.CrossRefGoogle Scholar
- 37.Liu J, Wang J, Song Y, Ma B, Luo J, Ni Z, et al. A panel consisting of three novel circulating lncRNAs, is it a predictive tool for gastric cancer? J Cell Mol Med. 2018;22(7):3605–13.CrossRefGoogle Scholar
- 38.Hu HB, Jie HY, Zheng XX. Three circulating lncRNA predict early progress of esophageal squamous cell carcinoma. Cell Physiol Biochem. 2016;40(1–2):117–25.CrossRefGoogle Scholar
- 39.Wang C, Yu J, Han Y, Li L, Li J, Li T, et al. Long non-coding RNAs LOC285194, RP11-462C24.1 and Nbla12061 in serum provide a new approach for distinguishing patients with colorectal cancer from healthy controls. Oncotarget. 2016;7(43):70769–78.Google Scholar
- 40.Mayboroda O, Katakis I, O’Sullivan CK. Multiplexed isothermal nucleic acid amplification. Anal Biochem. 2018;545:20–30.CrossRefGoogle Scholar
- 41.Shi T, Gao G, Cao Y. Long noncoding RNAs as novel biomarkers have a promising future in cancer diagnostics. Dis Markers. 2016;2018:9085195.Google Scholar
- 42.Arun G, Diermeier SD, Spector DL. Therapeutic targeting of long non-coding RNAs in cancer. Trends Mol Med. 2018;24(3):257–77.CrossRefGoogle Scholar
- 43.Abudayyeh OO, Gootenberg JS, Essletzbichler P, Han S, Joung J, Belanto JJ, et al. RNA targeting with CRISPR-Cas13a. Nature. 2017;550:280–4.CrossRefGoogle Scholar