Advertisement

A generic workflow for the characterization of therapeutic monoclonal antibodies—application to daratumumab

  • Bastiaan L. Duivelshof
  • Szabolcs Fekete
  • Davy GuillarmeEmail author
  • Valentina D’Atri
Paper in Forefront
Part of the following topical collections:
  1. Young Investigators in (Bio-)Analytical Chemistry

Abstract

In the present analytical workflow, chromatographic methods have been developed and hyphenated to mass spectrometry (MS) for the characterization of protein size, charge, hydrophobic, and hydrophilic variants of daratumumab. Multiple critical quality attributes (CQAs) were characterized in forced degraded daratumumab sample, using size exclusion, ion exchange (IEX), and hydrophobic interaction (HIC) chromatography coupled to fluorescence detection for relative quantification and fractionation. Mass assignment was performed by using a fast, non-denaturing and universal size exclusion chromatography (SEC) method prior to native MS analysis of the collected fractions (off-line approach). This allowed the identification of N-terminal lysine clipping, and the extent of glycation and oxidation at intact protein level. Finally, middle-up analysis of daratumumab was performed using reversed phase (RPLC) and hydrophilic interaction (HILIC) chromatography coupled to MS to obtain a comprehensive overview of all PTMs after the forced stressed conditions and a fine characterization of the glycosylation profile. Conveniently, the presented workflow maintains the established golden standard non-denaturing chromatography techniques and additionally introduces a straightforward and automated desalting procedure prior to MS analysis. Therefore, it is expected that the off-line coupling of SEC, IEX, and HIC to SEC-MS has great potential to be implemented in routine characterization of mAbs.

Graphical abstract

Keywords

Monoclonal antibodies Size exclusion chromatography Ion exchange chromatography Reversed phase chromatography Hydrophilic interaction chromatography Mass spectrometry 

Notes

Acknowledgments

Davy Guillarme wishes to thank the Swiss National Science Foundation for support through a fellowship to Szabolcs Fekete (31003A 159494). Jean-Luc Veuthey from the University of Geneva is also acknowledged for useful comments and discussions.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Beck A, Wagner-Rousset E, Ayoub D, Van Dorsselaer A, Sanglier-Cianférani S. Characterization of therapeutic antibodies and related products. Anal Chem. 2013;85(2):715–36.CrossRefGoogle Scholar
  2. 2.
    Fekete S, Guillarme D, Sandra P, Sandra K. Chromatographic, electrophoretic, and mass spectrometric methods for the analytical characterization of protein biopharmaceuticals. Anal Chem. 2016;88(1):480–507.CrossRefGoogle Scholar
  3. 3.
    Blair HA. Daratumumab: a review in relapsed and/or refractory multiple myeloma. Drugs. 2017;77(18):2013–24.CrossRefGoogle Scholar
  4. 4.
    European Medicines Agency. Darzalex. Retrieved from. https://bit.ly/2D0fjEH. Accessed 23 October 2018.
  5. 5.
    Mateos M-V, Dimopoulos MA, Cavo M, Suzuki K, Jakubowiak A, Knop S, et al. Daratumumab plus bortezomib, melphalan, and prednisone for untreated myeloma. N Engl J Med. 2018;378(6):518–28.CrossRefGoogle Scholar
  6. 6.
    Johnson & Johnson Reports 2017 Fourth-quarter results. Retrieved from. https://bit.ly/2yWjUn3. Accessed 23 October 2018.
  7. 7.
    Bobály B, Sipkó E, Fekete J. Challenges in liquid chromatographic characterization of proteins. J Chromatogr B. 2016;1032:3–22.CrossRefGoogle Scholar
  8. 8.
    D’Atri V, Fekete S, Stoll D, Lauber M, Beck A, Guillarme D. Characterization of an antibody-drug conjugate by hydrophilic interaction chromatography coupled to mass spectrometry. J Chromatogr B. 2018;1080:37–41.CrossRefGoogle Scholar
  9. 9.
    D’Atri V, Dumont E, Vandenheede I, Guillarme D, Sandra P, Sandra K. Hydrophilic interaction chromatography for the characterization of therapeutic monoclonal antibodies at protein, peptide, and glycan levels. LC-GC Eur. 2017;30(8):424–34.Google Scholar
  10. 10.
    Nowak C, K. Cheung J, M. Dellatore S, Katiyar A, Bhat R, Sun J, et al. Forced degradation of recombinant monoclonal antibodies: a practical guide. MAbs. 2017;9(8):1217–30.CrossRefGoogle Scholar
  11. 11.
    King C, Patel R, Ponniah G, Nowak C, Neill A, Gu Z, et al. Characterization of recombinant monoclonal antibody variants detected by hydrophobic interaction chromatography and imaged capillary isoelectric focusing electrophoresis. J Chromatogr B. 2018;1085:96–103.CrossRefGoogle Scholar
  12. 12.
    Shah DD, Zhang J, Hsieh M, Sundaram S, Maity H, Mallela KMG. Effect of peroxide- versus alkoxyl-induced chemical oxidation on the structure, stability, aggregation, and function of a therapeutic monoclonal antibody. J Pharm Sci. 2018;107(11):2789–803.CrossRefGoogle Scholar
  13. 13.
    Gstöttner C, Klemm D, Haberger M, Bathke A, Wegele H, Bell C, et al. Fast and automated characterization of antibody variants with 4D HPLC/MS. Anal Chem. 2018;90(3):2119–25.CrossRefGoogle Scholar
  14. 14.
    Coussot G, Le Postollec A, Faye C, Dobrijevic M. A gold standard method for the evaluation of antibody-based materials functionality: approach to forced degradation studies. J Pharm Biomed Anal. 2018;152:17–24.CrossRefGoogle Scholar
  15. 15.
    Ambrogelly A, Gozo S, Katiyar A, Dellatore S, Kune Y, Bhat R, et al. Analytical comparability study of recombinant monoclonal antibody therapeutics. MAbs. 2018;10(4):513–38.CrossRefGoogle Scholar
  16. 16.
    Fekete S, Guillarme D. Ultra-high-performance liquid chromatography for the characterization of therapeutic proteins. TrAC Trends Anal Chem. 2014;63:76–84.CrossRefGoogle Scholar
  17. 17.
    Reusch D, Tejada ML. Fc glycans of therapeutic antibodies as critical quality attributes. Glycobiology. 2015;25(12):1325–34.CrossRefGoogle Scholar
  18. 18.
    Reusch D, Haberger M, Maier B, Maier M, Kloseck R, Zimmermann B, et al. Comparison of methods for the analysis of therapeutic immunoglobulin G Fc-glycosylation profiles—part 1: separation-based methods. MAbs. 2015;7(1):167–79.CrossRefGoogle Scholar
  19. 19.
    Goyon A, D’Atri V, Bobaly B, Wagner-Rousset E, Beck A, Fekete S, et al. Protocols for the analytical characterization of therapeutic monoclonal antibodies. I – non-denaturing chromatographic techniques. J Chromatogr B. 2017;1058(February):73–84.CrossRefGoogle Scholar
  20. 20.
    Boyd D, Kaschak T, Yan B. HIC resolution of an IgG1 with an oxidized Trp in a complementarity determining region. J Chromatogr B. 2011;879(13–14):955–60.CrossRefGoogle Scholar
  21. 21.
    Harris RJ, Kabakoff B, Macchi FD, Shen FJ, Kwong M, Andya JD, et al. Identification of multiple sources of charge heterogeneity in a recombinant antibody. J Chromatogr B Biomed Sci Appl. 2001;752(2):233–45.CrossRefGoogle Scholar
  22. 22.
    Stoll DR, Maloney TD. Recent advances in two-dimensional liquid chromatography for pharmaceutical and biopharmaceutical analysis. LCGC N Am. 2017;35(9):680–7.Google Scholar
  23. 23.
    Wang X, Buckenmaier SSD. The growing role of two-dimensional LC in the biopharmaceutical industry. J Appl Bioanal. 2017;3(5):120–6.CrossRefGoogle Scholar
  24. 24.
    Luo H, Zhong W, Yang J, Zhuang P, Meng F, Caldwell J, et al. 2D-LC as an on-line desalting tool allowing peptide identification directly from MS unfriendly HPLC methods. J Pharm Biomed Anal. 2017;137:139–45.CrossRefGoogle Scholar
  25. 25.
    Johnson KA, Paisley-Flango K, Tangarone BS, Porter TJ, Rouse JC. Cation exchange–HPLC and mass spectrometry reveal C-terminal amidation of an IgG1 heavy chain. Anal Biochem. 2007;360(1):75–83.CrossRefGoogle Scholar
  26. 26.
    Haberger M, Bomans K, Diepold K, Hook M, Gassner J, Schlothauer T, et al. Assessment of chemical modifications of sites in the CDRs of recombinant antibodies. MAbs. 2014;6(2):327–39.CrossRefGoogle Scholar
  27. 27.
    Ehkirch A, Hernandez-Alba O, Colas O, Beck A, Guillarme D, Cianférani S. Hyphenation of size exclusion chromatography to native ion mobility mass spectrometry for the analytical characterization of therapeutic antibodies and related products. J Chromatogr B Anal Technol Biomed Life Sci. 2018;1086(March):176–83.CrossRefGoogle Scholar
  28. 28.
    Ehkirch A, D’Atri V, Rouviere F, Hernandez-Alba O, Goyon A, Colas O, et al. An online four-dimensional HIC×SEC-IM×MS methodology for proof-of-concept characterization of antibody drug conjugates. Anal Chem. 2018;90(3):1578–86.CrossRefGoogle Scholar
  29. 29.
    Haberger M, Leiss M, Heidenreich A-K, Pester O, Hafenmair G, Hook M, et al. Rapid characterization of biotherapeutic proteins by size-exclusion chromatography coupled to native mass spectrometry. MAbs. 2016;8(2):331–9.CrossRefGoogle Scholar
  30. 30.
    Füssl F, Cook K, Scheffler K, Farrell A, Mittermayr S, Bones J. Charge variant analysis of monoclonal antibodies using direct coupled pH gradient cation exchange chromatography to high-resolution native mass spectrometry. Anal Chem. 2018;90(7):4669–76.CrossRefGoogle Scholar
  31. 31.
    Fekete S, Berky R, Fekete J, Veuthey J-L, Guillarme D. Evaluation of recent very efficient wide-pore stationary phases for the reversed-phase separation of proteins. J Chromatogr A. 2012;1252:90–103.CrossRefGoogle Scholar
  32. 32.
    Holzmann J, Hausberger A, Rupprechter A, Toll H. Top-down MS for rapid methionine oxidation site assignment in filgrastim. Anal Bioanal Chem. 2013;405(21):6667–74.CrossRefGoogle Scholar
  33. 33.
    D’Atri V, Goyon A, Bobaly B, Beck A, Fekete S, Guillarme D. Protocols for the analytical characterization of therapeutic monoclonal antibodies. III – denaturing chromatographic techniques hyphenated to mass spectrometry. J Chromatogr B. 2018;1096:95–106.CrossRefGoogle Scholar
  34. 34.
    Valliere-Douglass J, Wallace A, Balland A. Separation of populations of antibody variants by fine tuning of hydrophobic-interaction chromatography operating conditions. J Chromatogr A. 2008;1214(1–2):81–9.CrossRefGoogle Scholar
  35. 35.
    Wei B, Berning K, Quan C, Zhang YT. Glycation of antibodies: modification, methods and potential effects on biological functions. MAbs. 2017;9(4):586–94.CrossRefGoogle Scholar
  36. 36.
    Teshima G, Li M-X, Danishmand R, Obi C, To R, Huang C, et al. Separation of oxidized variants of a monoclonal antibody by anion-exchange. J Chromatogr A. 2011;1218(15):2091–7.CrossRefGoogle Scholar
  37. 37.
    Sandra K, Vandenheede I, Sandra P. Modern chromatographic and mass spectrometric techniques for protein biopharmaceutical characterization. J Chromatogr A. 2014;1335:81–103.CrossRefGoogle Scholar
  38. 38.
    Folzer E, Diepold K, Bomans K, Finkler C, Schmidt R, Bulau P, et al. Selective oxidation of methionine and tryptophan residues in a therapeutic IgG1 molecule. J Pharm Sci. 2015;104(9):2824–31.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Bastiaan L. Duivelshof
    • 1
  • Szabolcs Fekete
    • 1
  • Davy Guillarme
    • 1
    Email author
  • Valentina D’Atri
    • 1
  1. 1.School of Pharmaceutical SciencesUniversity of Geneva, University of LausanneGeneva 4Switzerland

Personalised recommendations