Analytical and Bioanalytical Chemistry

, Volume 411, Issue 6, pp 1273–1286 | Cite as

Targeted mass spectrometry to monitor nuclear accumulation of endogenous Nrf2 and its application to SH-SY5Y cells stimulated with food components

  • Christiane Östreicher
  • Sabrina Gensberger-Reigl
  • Monika PischetsriederEmail author
Research Paper


The Nrf2 signaling pathway is highly significant for redox homeostasis. Hence, nutrients and drugs activating Nrf2 can prevent oxidative stress-mediated medical conditions. After activation, Nrf2 accumulates in the cell nucleus; therefore, stimulation of Nrf2 by food components and drugs is usually monitored by measuring nuclear Nrf2 levels. The present study developed a targeted mass spectrometry method for the highly reliable quantification of nuclear Nrf2 levels. Three Nrf2-specific peptides were detected after enzymatic digestion of the nuclear fraction by the developed protocol for micro-liquid chromatography–tandem mass spectrometry in scheduled multiple reaction monitoring mode (microLC–MS/MS-sMRM). The method also identified nuclear Nrf2 unequivocally and specifically in the SDS-PAGE fraction of 100–150 kDa. Moreover, highly precise and linear relative quantification was achieved (mean relative standard deviation 8.3%; coefficient of determination 0.998). Incubation experiments in SH-SY5Y neuroblastoma cells revealed significantly up to 6-fold elevated nuclear Nrf2 levels after stimulation with 10 μM carnosol (rosemary), 10 μM sulforaphane (broccoli), or 20 μM cinnamaldehyde (cinnamon). Our results were in very good accordance with conventional Nrf2 western blotting and were highly correlated with the food components’ effect on the expression levels of NAD(P)H dehydrogenase [quinone] 1 and thioredoxin reductase 1, two major Nrf2-regulated cytoprotective enzymes. The newly developed microLC–MS/MS-sMRM method shows broad applicability and can serve as a highly selective and reliable method to analyze Nrf2 activation.

Graphical abstract


Carnosol NAD(P)H dehydrogenase [quinone] 1 Nrf2 Scheduled multiple reaction monitoring Sulforaphane Targeted mass spectrometry 



We thank Christine Meissner for proofreading the manuscript.


CÖ was supported by the Kekulé Mobility Fellowship by the Fonds der Chemischen Industrie (VCI). This study was partly funded by the Deutsche Forschungsgemeinschaft (DFG, GRK1910).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

216_2018_1560_MOESM1_ESM.pdf (357 kb)
ESM 1 (PDF 356 kb)


  1. 1.
    Lee JM, Calkins MJ, Chan KM, Kan YW, Johnson JA. Identification of the NF-E2-related factor-2-dependent genes conferring protection against oxidative stress in primary cortical astrocytes using oligonucleotide microarray analysis. J Biol Chem. 2003;278(14):12029–38.CrossRefGoogle Scholar
  2. 2.
    Kumar H, Kim IS, More SV, Kim BW, Choi DK. Natural product-derived pharmacological modulators of Nrf2/ARE pathway for chronic diseases. Nat Prod Rep. 2014;31(1):109–39.CrossRefGoogle Scholar
  3. 3.
    Johnson DA, Johnson JA. Nrf2—a therapeutic target for the treatment of neurodegenerative diseases. Free Radic Biol Med. 2015;88(Pt B):253–67.CrossRefGoogle Scholar
  4. 4.
    Suzuki T, Yamamoto M. Molecular basis of the Keap1-Nrf2 system. Free Radic Biol Med. 2015;88(Pt B):93–100.CrossRefGoogle Scholar
  5. 5.
    Xue M, Momiji H, Rabbani N, Barker G, Bretschneider T, Shmygol A, et al. Frequency modulated translocational oscillations of Nrf2 mediate the antioxidant response element cytoprotective transcriptional response. Antioxid Redox Signal. 2015;23(7):613–29.CrossRefGoogle Scholar
  6. 6.
    Lau A, Tian W, Whitman SA, Zhang DD. The predicted molecular weight of Nrf2: it is what it is not. Antioxid Redox Signal. 2013;18(1):91–3.CrossRefGoogle Scholar
  7. 7.
    Kemmerer ZA, Ader NR, Mulroy SS, Eggler AL. Comparison of human Nrf2 antibodies: a tale of two proteins. Toxicol Lett. 2015;238(2):83–9.CrossRefGoogle Scholar
  8. 8.
    Satsu H, Chidachi E, Hiura Y, Ogiwara H, Gondo Y, Shimizu M. Induction of NAD(P)H:quinone oxidoreductase 1 expression by cysteine via Nrf2 activation in human intestinal epithelial LS180 cells. Amino Acids. 2012;43(4):1547–55.CrossRefGoogle Scholar
  9. 9.
    Stachel I, Geismann C, Aden K, Deisinger F, Rosenstiel P, Schreiber S, et al. Modulation of nuclear factor E2-related factor-2 (Nrf2) activation by the stress response gene immediate early response-3 (IER3) in colonic epithelial cells. A novel mechanism of cellular adaption to inflammatory stress. J Biol Chem. 2014;289(4):1917–29.CrossRefGoogle Scholar
  10. 10.
    Kim WD, Kim YW, Cho IJ, Lee CH, Kim SG. E-cadherin inhibits nuclear accumulation of Nrf2: implications for chemoresistance of cancer cells. J Cell Sci. 2012;125(5):1284–95.CrossRefGoogle Scholar
  11. 11.
    Genc K, Egrilmez MY, Genc S. Erythropoietin induces nuclear translocation of Nrf2 and heme oxygenase-1 expression in SH-SY5Y cells. Cell Biochem Funct. 2010;28(3):197–201.CrossRefGoogle Scholar
  12. 12.
    Chen JH, Ou HP, Lin CY, Lin FJ, Wu CR, Chang SW, et al. Carnosic acid prevents 6-hydroxydopamine-induced cell death in SH-SY5Y cells via mediation of glutathione synthesis. Chem Res Toxicol. 2012;25(9):1893–901.CrossRefGoogle Scholar
  13. 13.
    Kim JS, Lee Y, Lee MY, Shin J, Han JM, Yang EG, et al. Multiple reaction monitoring of multiple low-abundance transcription factors in whole lung cancer cell lysates. J Proteome Res. 2013;12(6):2582–96.CrossRefGoogle Scholar
  14. 14.
    Ostreicher C, Bartenbacher S, Pischetsrieder M. Targeted proteome analysis with isotope-coded protein labels for monitoring the influence of dietary phytochemicals on the expression of cytoprotective proteins in primary human colon cells. J Proteome. 2017;166:27–38.CrossRefGoogle Scholar
  15. 15.
    A fast Peptide Match service for UniProt Knowledgebase [database on the Internet] 2013. Available from: Accessed: Dec 2, 2018.
  16. 16.
    dbSNP—database for single nucleotide polymorphisms and other classes of minor genetic variation [database on the Internet]1999. Available from: Accessed: Nov 9, 2018.
  17. 17.
    Emirbayer PE, Gerer KF, Hoyer S, Pischetsrieder M. Targeted label-free quantification of interleukin-8 in PMA-activated U937 cell secretome by nanoLC-ESI-MS/MS-sSRM. Proteomics. 2017;17(9).
  18. 18.
    Zaenglein N, Tucher J, Pischetsrieder M. Targeted mass spectrometry for the analysis of nutritive modulation of catalase and heme oxygenase-1 expression. J Proteome. 2015;117:58–69.CrossRefGoogle Scholar
  19. 19.
    Bartenbacher S, Ostreicher C, Pischetsrieder M. Profiling of antioxidative enzyme expression induced by various food components using targeted proteome analysis. Mol Nutr Food Res. 2017;61(9).
  20. 20.
    Huang HC, Nguyen T, Pickett CB. Phosphorylation of Nrf2 at Ser-40 by protein kinase C regulates antioxidant response element-mediated transcription. J Biol Chem. 2002;277(45):42769–74.CrossRefGoogle Scholar
  21. 21.
    Choi S, Kim J, Yea K, Suh PG, Kim J, Ryu SH. Targeted label-free quantitative analysis of secretory proteins from adipocytes in response to oxidative stress. Anal Biochem. 2010;401(2):196–202.CrossRefGoogle Scholar
  22. 22.
    Macoch M, Morzadec C, Genard R, Pallardy M, Kerdine-Romer S, Fardel O, et al. Nrf2-dependent repression of interleukin-12 expression in human dendritic cells exposed to inorganic arsenic. Free Radic Biol Med. 2015;88:381–90.CrossRefGoogle Scholar
  23. 23.
    Guan YH, Zhu QF, Huang DL, Zhao SY, Lo LJ, Peng JR. An equation to estimate the difference between theoretically predicted and SDS PAGE-displayed molecular weights for an acidic peptide. Sci Rep. 2015;5.
  24. 24.
    Li J, Johnson D, Calkins M, Wright L, Svendsen C, Johnson J. Stabilization of nrf2 by tBHQ confers protection against oxidative stress-induced cell death in human neural stem cells. Toxicol Sci. 2005;83(2):313–28.CrossRefGoogle Scholar
  25. 25.
    Williams DK, Muddiman DC. Absolute quantification of C-reactive protein in human plasma derived from patients with epithelial ovarian cancer utilizing protein cleavage isotope dilution mass spectrometry. J Proteome Res. 2009;8(2):1085–90.CrossRefGoogle Scholar
  26. 26.
    Bronstrup M. Absolute quantification strategies in proteomics based on mass spectrometry. Expert Rev Proteomics. 2004;1(4):503–12.CrossRefGoogle Scholar
  27. 27.
    Bantscheff M, Lemeer S, Savitski MM, Kuster B. Quantitative mass spectrometry in proteomics: critical review update from 2007 to the present. Anal Bioanal Chem. 2012;404(4):939–65.CrossRefGoogle Scholar
  28. 28.
    Zhou C, Huang Y, Przedborski S. Oxidative stress in Parkinson’s disease: a mechanism of pathogenic and therapeutic significance. Ann N Y Acad Sci. 2008;1147:93–104.CrossRefGoogle Scholar
  29. 29.
    Joung EJ, Li MH, Lee HG, Somparn N, Jung YS, Na HK, et al. Capsaicin induces heme oxygenase-1 expression in HepG2 cells via activation of PI3K-Nrf2 signaling: NAD(P)H:quinone oxidoreductase as a potential target. Antioxid Redox Signal. 2007;9(12):2087–98.CrossRefGoogle Scholar
  30. 30.
    Chew EH, Nagle AA, Zhang Y, Scarmagnani S, Palaniappan P, Bradshaw TD, et al. Cinnamaldehydes inhibit thioredoxin reductase and induce Nrf2: potential candidates for cancer therapy and chemoprevention. Free Radic Biol Med. 2010;48(1):98–111.CrossRefGoogle Scholar
  31. 31.
    Hong F, Freeman ML, Liebler DC. Identification of sensor cysteines in human Keap1 modified by the cancer chemopreventive agent sulforaphane. Chem Res Toxicol. 2005;18(12):1917–26.CrossRefGoogle Scholar
  32. 32.
    Martin D, Rojo AI, Salinas M, Diaz R, Gallardo G, Alam J, et al. Regulation of heme oxygenase-1 expression through the phosphatidylinositol 3-kinase/Akt pathway and the Nrf2 transcription factor in response to the antioxidant phytochemical carnosol. J Biol Chem. 2004;279(10):8919–29.CrossRefGoogle Scholar
  33. 33.
    Tarozzi A, Morroni F, Merlicco A, Hrelia S, Angeloni C, Cantelli-Forti G, et al. Sulforaphane as an inducer of glutathione prevents oxidative stress-induced cell death in a dopaminergic-like neuroblastoma cell line. J Neurochem. 2009;111(5):1161–71.CrossRefGoogle Scholar
  34. 34.
    Huang TC, Chung YL, Wu ML, Chuang SM. Cinnamaldehyde enhances Nrf2 nuclear translocation to upregulate phase II detoxifying enzyme expression in HepG2 cells. J Agric Food Chem. 2011;59(9):5164–71.CrossRefGoogle Scholar
  35. 35.
    Lee C, Park GH, Lee SR, Jang JH. Attenuation of beta-amyloid-induced oxidative cell death by sulforaphane via activation of NF-E2-related factor 2. Oxidative Med Cell Longev. 2013.
  36. 36.
    Han JM, Lee YJ, Lee SY, Kim EM, Moon Y, Kim HW, et al. Protective effect of sulforaphane against dopaminergic cell death. J Pharmacol Exp Ther. 2007;321(1):249–56.CrossRefGoogle Scholar
  37. 37.
    Izumi Y, Sawada H, Sakka N, Yamamoto N, Kume T, Katsuki H, et al. p-Quinone mediates 6-hydroxydopamine-induced dopaminergic neuronal death and ferrous iron accelerates the conversion of p-quinone into melanin extracellularly. J Neurosci Res. 2005;79(6):849–60.CrossRefGoogle Scholar
  38. 38.
    Kang J, Jeong MG, Oh S, Jang EJ, Kim HK, Hwang ES. A FoxO1-dependent, but NRF2-independent induction of heme oxygenase-1 during muscle atrophy. FEBS Lett. 2014;588(1):79–85.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Christiane Östreicher
    • 1
  • Sabrina Gensberger-Reigl
    • 1
  • Monika Pischetsrieder
    • 1
    Email author
  1. 1.Department of Chemistry and Pharmacy, Food Chemistry, Emil Fischer CenterFriedrich-Alexander Universität Erlangen-Nürnberg (FAU)ErlangenGermany

Personalised recommendations