Advertisement

Utilization of atmospheric solids analysis probe mass spectrometry for analysis of fatty acids on seed surface

  • Monika Cechová
  • Iveta Hradilová
  • Petr Smýkal
  • Petr Barták
  • Petr Bednář
Research Paper

Abstract

Atmospheric solids analysis probe mass spectrometry (ASAP-MS) was used for the first time for direct surface analysis of plant material. It can be readily used for surface analysis of whole and intact pea seeds and their seed coats, and for the study of the profile of fatty acids on the outer surface. Furthermore, ASAP-MS in combination with multivariate statistics allowed classification of pea genotypes with respect to physical dormancy and investigation of related biological markers. Hexacosanoic and octacosanoic acids were suggested to be important markers likely influencing water transport through the seed coat into the embryo (with the highest significance for dormant L100 genotype). ASAP-MS provided higher selectivity and better signal of fatty acids compared to (MA)LDI-MS (laser desorption ionization mass spectrometry either matrix free or matrix assisted) providing on the other hand spatial distribution information and results obtained by both methods are mutually supportive. The developed ASAP-MS method and obtained results can be widely utilized in biological, food, and agricultural research.

Graphical abstract

Keywords

Atmospheric solids analysis probe Mass spectrometry Fatty acid Pea Physical dormancy Legume seed 

Notes

Funding information

This study received the support from Operational Programme Research, Development and Education – European Regional Development Fund, project no. CZ.02.1.01/0.0/0.0/16_019/0000754 and Palacký University Olomouc (IGA_PrF_2018_027).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

216_2018_1551_MOESM1_ESM.pdf (1.8 mb)
ESM 1 (PDF 1866 kb)

References

  1. 1.
    Smýkal P, Vernoud V, Blair MW, Soukup A, Thompson RD. The role of the testa during development and in establishment of dormancy of the legume seed. Front Plant Sci. 2014.  https://doi.org/10.3389/fpls.2014.00351.
  2. 2.
    Hradilová I, Trněný O, Válková M, Cechová M, Janská A, Prokešová L, et al. A combined comparative transcriptomic, metabolomic, and anatomical analyses of two key domestication traits: pod dehiscence and seed dormancy in pea (Pisum sp.). Front Plant Sci. 2017.  https://doi.org/10.3389/fpls.2017.00542.
  3. 3.
    Alturkistani HA, Tashkandi FM, Mohammedsaleh ZM. Histological stains: a literature review and case study. Glob J Health Sci. 2016;8:72–9.CrossRefGoogle Scholar
  4. 4.
    Graven P, Koster CG, Boon JJ, Bouman F. Structure and macromolecular composition of the seed coat of the Musaceae. Ann Bot. 1996;77:105–22.CrossRefGoogle Scholar
  5. 5.
    Konar N, Poyrazoglu ES, Demir K, Artik N. Determination of conjugated and free isoflavones in some legumes by LC–MS/MS. J Food Compost Anal. 2012;25:173–8.CrossRefGoogle Scholar
  6. 6.
    Sauerschnig C, Doppler M, Bueschl C, Schuhmacher R. Methanol generates numerous artifacts during sample extraction and storage of extracts in metabolomics research. Meta. 2017.  https://doi.org/10.3390/metabo8010001.
  7. 7.
    Cone EJ, Buchwald WF, Darwin WD. Analytical controls in drug metabolic studies. II. Artifact formation during chloroform extraction of drugs and metabolites with amine substituents. Drug Metab Dispos. 1982;10:561–7.PubMedGoogle Scholar
  8. 8.
    Myjavcová R, Marhol R, Křen V, Simánek V, Ulrichová J, Palíková I, et al. Analysis of anthocyanin pigments in Lonicera (Caerulea) extracts using chromatographic fractionation followed by microcolumn liquid chromatography-mass spectrometry. J Chromatogr A. 2010;1217:7932–41.CrossRefGoogle Scholar
  9. 9.
    Shin SC, Lee SJ, Lee SJ, Chung JI, Bae DW, Kim ST, et al. Comparison of anthocyanin content in seed coats of black soybean [Glycine max(L.) Merr.] cultivars using liquid chromatography coupled to tandem mass spectrometry. Food Sci Biotechnol. 2009;18:1470–5.Google Scholar
  10. 10.
    Beninger CW, Gu LW, Prior RL, Junk DC, Vandenberg A, Bett KE. Changes in polyphenols of the seed coat during the after-darkening process in pinto beans (Phaseolus vulgaris L.). J Agric Food Chem. 2005;53:7777–82.CrossRefGoogle Scholar
  11. 11.
    Jhan JK, Chung YC, Chen GH, Chang CH, Lu YC, Hsu CK. Anthocyanin contents in the seed coat of black soya bean and their anti-human tyrosinase activity and antioxidative activity. Int J Cosmet Sci. 2016;38:319–24.CrossRefGoogle Scholar
  12. 12.
    Mirali M, Ambrose SJ, Wood SA, Vandenberg A, Purves RW. Development of a fast extraction method and optimization of liquid chromatography-mass spectrometry for the analysis of phenolic compounds in lentil seed coats. J Chromatogr B Analyt Technol Biomed Life Sci. 2014;969:149–61.CrossRefGoogle Scholar
  13. 13.
    Mirali M, Purves RW, Vandenberg A. Profiling the phenolic compounds of the four major seed coat types and their relation to color genes in lentil. J Nat Prod. 2017;80:1310–7.CrossRefGoogle Scholar
  14. 14.
    Kohyama N, Chono M, Nakagawa H, Matsuo Y, Ono H, Matsunaka H. Flavonoid compounds related to seed coat color of wheat. Biosci Biotechnol Biochem. 2017;81:2112–8.CrossRefGoogle Scholar
  15. 15.
    Ruiz KB, Khakimov B, Engelsen SB, Bak S, Biondi S, Jacobsen SE. Quinoa seed coats as an expanding and sustainable source of bioactive compounds: an investigation of genotypic diversity in saponin profiles. Ind Crop Prod. 2017;104:156–63.CrossRefGoogle Scholar
  16. 16.
    Rashind A, Badhan A, Deyholos M, Kav N. Proteomic profiling of the aleurone layer of mature Arabidopsis thaliana seed. Plant Mol Biol Rep. 2013;31:464–9.CrossRefGoogle Scholar
  17. 17.
    Takahata Y, Ohnishi-Kameyama M, Furuta S, Takahashi M, Suda I. Highly polymerized procyanidins in brown soybean seed coat with a high radical-scavenging activity. J Agric Food Chem. 2001;19:5843–7.CrossRefGoogle Scholar
  18. 18.
    Valcheva MP, Espelie KE, ChP I. Aliphatic composition of cutin from inner seed coat of apple. Phytochemistry. 1981;20:2225–7.CrossRefGoogle Scholar
  19. 19.
    Adhikary P, Mukherjee A, Barik A. Free fatty acids from Lathyrus sativus seed coats acting as short-range attractants to Callosobruchus maculatus (F.) (Coleoptera: Bruchidae). J Stored Prod Res. 2016;67:56–62.CrossRefGoogle Scholar
  20. 20.
    Liu J, Qina W, Wu H, Yanga C, Deng J, Iqbal N, et al. Metabolism variation and better storability of dark- versus light-coloured soybean (Glycine max L. Merr.) seeds. Food Chem. 2017;223:104–13.CrossRefGoogle Scholar
  21. 21.
    Shao S, Meyer CJ, Ma F, Peterson CA, Bernards MA. The outermost cuticle of soybean seeds: chemical composition and function during imbibition. J Exp Bot. 2007;58:1071–82.CrossRefGoogle Scholar
  22. 22.
    Yan H, Hua Z, Qian GI, Wang M, Du G, Chen J. Analysis of the chemical composition of cotton seed coat by Fourier-transform infrared (FT-IR) microspectroscopy. Cellulose. 2009;16:1099–107.CrossRefGoogle Scholar
  23. 23.
    Kaspar S, Peukert M, Svatos A, Matros A, Mock HP. MALDI-imaging mass spectrometry - an emerging technique in plant biology. Proteomics. 2011;11:1840–50.CrossRefGoogle Scholar
  24. 24.
    Korte AR, Yagnik GB, Feenstra AD, Lee YJ. Multiplex MALDI-MS imaging of plant metabolites using a hybrid MS system. New York: Humana Press; 2015.CrossRefGoogle Scholar
  25. 25.
    Heyman HM, Dubery IA. The potential of mass spectrometry imaging in plant metabolomics: a review. Phytochem Rev. 2016;15:297–316.CrossRefGoogle Scholar
  26. 26.
    Boughton BA, Thinagaran D, Sarabia D, Bacis A, Roessner U. Mass spectrometry imaging for plant biology: a review. Phytochem Rev. 2015;15:445–88.CrossRefGoogle Scholar
  27. 27.
    Kim YJ, Lee SJ, Lee HM, Lee BW, Ha TJ, Bae DW, et al. Comparative proteomics analysis of seed coat from two black colored soybean cultivars during seed development. Plant Omics. 2013;6:456–63.Google Scholar
  28. 28.
    Cechová M, Válková M, Hradilová I, Janská A, Soukup A, Smýkal P, et al. Towards better understanding of pea seed dormancy using laser desorption/ionization mass spectrometry. Int J Mol Sci. 2017;  https://doi.org/10.3390/ijms18102196.
  29. 29.
    McEwen CN, Lieu T, Saylor S, Twohig M, Balogh MP. Atmospheric samples analysis probe (ASAP) mass spectrometry. In: Domin M, Cody R, editors. Ambient ionization mass spectrometry. Cambrige: RSC Adv; 2015. p. 104–19.Google Scholar
  30. 30.
    Tose LV, Murgu M, Vaz BG, Romão W. Application of atmospheric solids analysis probe mass spectrometry (ASAP-MS) in petroleomics: analysis of condensed aromatics standards, crude oil, and Paraffinic Fraction. J Am Soc Mass Spectrom. 2017;28:2401–7.CrossRefGoogle Scholar
  31. 31.
    Gaiffe G, Cole RB, Lacpatia S, Bridoux MC. Characterization of fluorinated polymers by atmospheric-solid-analysis-probe high-resolution mass spectrometry (ASAP/HRMS) combined with Kendrick-mass-defect analysis. Anal Chem. 2018;90:6035–42.CrossRefGoogle Scholar
  32. 32.
    Doué M, Dervilly-Pinel G, Gicquiau A, Pouponneau K, Monteau F, Bizec B. High throughput identification and quantification of anabolic steroid esters by atmospheric solids analysis probe mass spectrometry for efficient screening of drug preparations. Anal Chem. 2014;86:5649–55.CrossRefGoogle Scholar
  33. 33.
    Carrizo D, Nerín I, Domeño C, Alfaro P, Nerín C. Direct screening of tobacco indicators in urine and saliva by atmospheric pressure solid analysis probe coupled to quadrupole-time of flight mass spectrometry (ASAP-MS-Q-TOF-). J Pharm Biomed Anal. 2016;124:149–56.CrossRefGoogle Scholar
  34. 34.
    Crevelin EJ, Salami FH, Alves MNR, De Martinis BS, Crotti AEM, Moraes LAB. Direct analysis of amphetamine stimulants in a whole urine sample by atmospheric solids analysis probe tandem mass spectrometry. J Am Soc Mass Spectrom. 2016;27:944–7.CrossRefGoogle Scholar
  35. 35.
    Kramell A, Porbeck F, Kluge R, Wiesner A, Csuk R. A fast and reliable detection of indigo in historic and prehistoric textile samples. J Mass Spectrom. 2015;50:1039–43.CrossRefGoogle Scholar
  36. 36.
    McEwen CN, McKay RG, Larsen BS. Analysis of solids, liquids, and biological tissues using solids probe introduction at atmospheric pressure on commercial LC/MS instruments. Anal Chem. 2005;77:7826–31.CrossRefGoogle Scholar
  37. 37.
    Chen W, Nkosi TAN, Combrinck S, Viljoen AM, Cartwright-Jones C. Rapid analysis of the skin irritant p-phenylenediamine (PPD) in henna products using atmospheric solids analysis probe mass spectrometry. J Pharm Biomed Anal. 2016;128:119–25.CrossRefGoogle Scholar
  38. 38.
    Xiao X, Miller LL, Parchert KJ, Hayes D, Hochrein JM. Atmospheric solids analysis probe mass spectrometry for the rapid identification of pollens and semi-quantification of flavonoid fingerprints. Rapid Commun Mass Spectrom. 2016;30:1639–46.CrossRefGoogle Scholar
  39. 39.
    Huang BY, Ouyang XH, Sun J, Xiao ZY, Pan CP. Rapid quantification of 13 pesticides in vegetables by atmospheric-pressure solids analysis probe (ASAP) coupled to tandem mass spectrometry. Chem J Chinese U. 2013;34:1591–7.Google Scholar
  40. 40.
    Fussell RJ, Chan D, Sharman M. An assessment of atmospheric-pressure solids-analysis probes for the detection of chemicals in food. Trends Analyt Chem. 2010;29:1326–35.CrossRefGoogle Scholar
  41. 41.
    Dababi I, Gimello O, Elaloui E, Quignard F, Brosse N. Organosolv lignin-based wood adhesive. Influence of the lignin extraction conditions on the adhesive performance. Polymers. 2016.  https://doi.org/10.3390/polym8090340.
  42. 42.
    Fan X, Zhu JL, Zheng A, Wei XY, Zhao YP, Cao JP, et al. Rapid characterization of heteroatomic molecules in a bio-oil from pyrolysis of rice husk using atmospheric solids analysis probe mass spectrometry. J Anal Appl Pyrolysis. 2015;115:16–23.CrossRefGoogle Scholar
  43. 43.
    McEwen C, Gutteridge S. Analysis of the inhibition of the ergosterol pathway in fungi using the atmospheric solids analysis probe (ASAP) method. J Am Soc Mass Spectrom. 2007;18:1274–8.CrossRefGoogle Scholar
  44. 44.
    Zhang F, Guo S, Zhang M, Zhang Z, Guo Y. Characterizing ion mobility and collision cross section of fatty acids using electrospray ion mobility mass spectrometry. J Mass Spectrom. 2015;50:906–13.CrossRefGoogle Scholar
  45. 45.
    Robotti E, Manfredi M, Marengo E. Biomarkers discovery through multivariate statistical methods: a review of recently developed methods and applications in proteomics. J Proteomics Bioinform. 2014.  https://doi.org/10.4172/jpb.S3-003.
  46. 46.
    Graven P, De Koster CG, Boon JJ, Bouman F. Functional aspects of mature seed coat of the Cannaceae. Pl Syst Evol. 1997;205:223–40.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Monika Cechová
    • 1
  • Iveta Hradilová
    • 2
  • Petr Smýkal
    • 2
  • Petr Barták
    • 1
  • Petr Bednář
    • 1
  1. 1.Regional Centre of Advanced Technologies and Materials, Department of Analytical Chemistry, Faculty of SciencePalacký UniversityOlomoucCzech Republic
  2. 2.Department of Botany, Faculty of SciencePalacký UniversityOlomoucCzech Republic

Personalised recommendations