Advertisement

Electrochemical nanoprobe-based immunosensor for deoxynivalenol mycotoxin residues analysis in wheat samples

  • Enrique ValeraEmail author
  • Raül García-Febrero
  • Christopher T. Elliott
  • Francisco Sánchez-Baeza
  • M.-P. Marco
Research Paper
  • 72 Downloads
Part of the following topical collections:
  1. Nanoparticles for Bioanalysis

Abstract

Deoxynivalenol (DON) is a toxic secondary metabolite produced by several species of Fusarium fungi, which can be predominantly found in agricultural crops such as wheat. In livestock, deoxynivalenol-contaminated grain can produce vomiting, feed refusal, weight loss, and diarrhea. This paper reports an electrochemical immunosensor for the detection of residual DON mycotoxin in food samples. The device uses electrochemical nanoprobes (CdSNP-AbDON) and antigen biofunctionalized magnetic μ-particles (DON-BSAMP) to detect the mycotoxin. CdSNP-AbDON are prepared by labelling the DON-specific antibodies with CdS nanoparticles (CdSNPs). Nanoparticle size and CdSNP-AbDON conjugation ratio are characterized using TEM images. The metal ions released by the CdSNP are reduced at the working electrode and read by anodic stripping voltammetry. DON can be detected in PBST buffer with an IC50 of 6.74 ± 0.19 μg L−1. The high detectability of the immunosensor developed allows detection of DON residues in 50-fold diluted wheat extracts. The limit of detection (LOD, IC90) accomplished in wheat is of 342.4 μg kg−1, which is below the maximum residue limit (MRL, 1750 μg kg−1 for unprocessed durum wheat, 750 μg kg−1 for cereals intended for direct human consumption) established by the EU for this mycotoxin. The working range is in the interval between 610 and 6210 μg kg−1. The performance of the immunosensor was compared with the ELISA assay. DON naturally contaminated wheat samples were analyzed with the immunosensor, showing acceptable recoveries.

Graphical abstract

Keywords

Immunosensor CdS nanoparticles Electrochemical nanoprobes Deoxynivalenol mycotoxin residues Wheat Food safety 

Notes

Funding information

E. Valera thanks support from the Spanish Government (Ministerio de Ciencia e Innovación) for a Juan de la Cierva fellowship. The European Community (FP7-KBBE-211326) have supported this work. CIBER-BBN is an initiative funded by the VI National R&D&i Plan 2008–2011, Iniciativa Ingenio 2010, Consolider Program, and CIBER Actions and financed by the Instituto de Salud Carlos III with assistance from the European Regional Development Fund. The AMR group is a consolidated Grup de Recerca de la Generalitat de Catalunya and has support from the Departament d’Universitats, Recerca i Societat de la Informació la Generalitat de Catalunya (expedient 2009 SGR 1343).

Compliance with ethical standards

Conflict of interest

All authors declare that there is no conflict of interest regarding the publication of this article.

Supplementary material

216_2018_1538_MOESM1_ESM.pdf (78 kb)
ESM 1 (PDF 78.2 kb)

References

  1. 1.
    Zhang M, Yuan R, Chai Y, Chen S, Zhong H, Wang C, et al. A biosensor for cholesterol based on gold nanoparticles-catalyzed luminol electrogenerated chemiluminescence. Biosens Bioelectron. 2012;32(1):288–92.CrossRefGoogle Scholar
  2. 2.
    Daus AW, Layer PG, Thielemann C. A spheroid-based biosensor for the label-free detection of drug-induced field potential alterations. Sensors Actuators B. 2012;165(1):53–8.CrossRefGoogle Scholar
  3. 3.
    Ben-Yoav H, Amzel T, Biran A, Sternheim M, Belkin S, Freeman A, et al. Bacterial biofilm-based water toxicity sensor. Sensors Actuators B. 2011;158:366–71.CrossRefGoogle Scholar
  4. 4.
    Ramón-Azcón J, Valera E, Rodríguez A, Barranco A, Alfaro B, Sanchez-Baeza F, et al. An impedimetric immunosensor based on interdigitated microelectrodes (IDμE) for the determination of atrazine residues in food samples. Biosens Bioelectron. 2008;23(9):1367–73.CrossRefGoogle Scholar
  5. 5.
    Meneely JP, Sulyok M, Baumgartner S, Krska R, Elliott CT. A rapid optical immunoassay for the screening of T-2 and HT-2 toxin in cereals and maize-based baby food. Talanta. 2010;81:630–6.CrossRefGoogle Scholar
  6. 6.
    Tong P, Zhang L, Xu J-J, Chen H-Y. Simply amplified electrochemical aptasensor of ochratoxin A based on exonuclease-catalyzed target recycling. Biosens Bioelectron. 2011;29(1):97–101.CrossRefGoogle Scholar
  7. 7.
    Zhang A, Ma Y, Feng L, Wang Y, He C, Wang X, et al. Development of a sensitive competitive indirect ELISA method for determination of ochratoxin A levels in cereals originating from Nanjing, China. Food Control. 2011;22(11):1723–8.CrossRefGoogle Scholar
  8. 8.
  9. 9.
    Commission Regulation (EC) No 1126/2007 of 28 September 2007 amending Regulation (EC) No 1881/2006 setting maximum levels for certain contaminants in foodstuffs as regards Fusarium toxins in maize and maize products. European Commission. JOL_2007_255_R_0014_01Google Scholar
  10. 10.
    Wagacha JM, Muthomi JW. Fusarium culmorum: infection process, mechanisms of mycotoxin production and their role in pathogenesis in wheat. Crop Prot. 2007;26:877–85.CrossRefGoogle Scholar
  11. 11.
    Müllera MEH, Brenning A, Verch G, Koszinski S, Sommer M. Multifactorial spatial analysis of mycotoxin contamination of winter wheat at the field and landscape scale. Agric Ecosyst Environ. 2010;139:245–54.CrossRefGoogle Scholar
  12. 12.
    Klinglmayr C, Nöbauer K, Razzazi-Fazeli E, Cichna-Markl M. Determination of deoxynivalenol in organic and conventional food and feed by sol–gel immunoaffinity chromatography and HPLC–UV detection. J Chromatogr B. 2010;878:187–93.CrossRefGoogle Scholar
  13. 13.
    Rubert J, Soler C, Mañes J. Evaluation of matrix solid-phase dispersion (MSPD) extraction for multi-mycotoxin determination in different flours using LC–MS/MS. Talanta. 2011;85:206–15.CrossRefGoogle Scholar
  14. 14.
    Oueslati S, Romero-González R, Lasram S, Garrido Frenich A, Martínez Vidal JL. Multi-mycotoxin determination in cereals and derived products marketed in Tunisia using ultra-high performance liquid chromatography coupled to triple quadrupole mass spectrometry. Food Chem Toxicol. 2012;50:2736–381.CrossRefGoogle Scholar
  15. 15.
    Soleimany F, Jinap S, Abas F. Determination of mycotoxins in cereals by liquid chromatography tandem mass spectrometry. Food Chem. 2012;130:1055–60.CrossRefGoogle Scholar
  16. 16.
    Simsek S, Burgess K, Whitney KL, Gu Y, Qian SY. Analysis of deoxynivalenol and deoxynivalenol-3-glucoside in wheat. Food Control. 2012;2012:287–92.CrossRefGoogle Scholar
  17. 17.
    Palacios SA, Erazo JG, Ciasca B, Lattanzio VMT, Reynoso MM, Farnochi MC, et al. Occurrence of deoxynivalenol and deoxynivalenol-3-glucoside in durum wheat from Argentina. Food Chem. 2017;230:728–34.CrossRefGoogle Scholar
  18. 18.
    Rahimi E, Sadeghi E, Bohlouli S, Karam F. Fates of deoxynivalenol and deoxynivalenol-3-glucoside from wheat flour to Iranian traditional breads. Food Control. 2018;91:339–43.CrossRefGoogle Scholar
  19. 19.
    Meneely J, Fodey T, Armstrong L, Sulyok M, Krska R, Elliot C. Rapid surface plasmon resonance immunoassay for the determination of deoxynivalenol in wheat, wheat products, and maize-based baby food. J Agric Food Chem. 2010;58:8936–41.CrossRefGoogle Scholar
  20. 20.
    Kadota T, Takezawa Y, Hirano S, Tajima O, Maragos CM, Nakajima T, et al. Rapid detection of nivalenol and deoxynivalenol in wheat using surface plasmon resonance immunoassay. Anal Chim Acta. 2010;673:173–8.CrossRefGoogle Scholar
  21. 21.
    Lattanzio VMT, Nivarlet N, Lippolis V, Della Gatta S, Huet A-C, Delahaut P, et al. Multiplex dipstick immunoassay for semi-quantitative determination of Fusarium mycotoxins in cereals. Anal Chim Acta. 2012;718:99–108.CrossRefGoogle Scholar
  22. 22.
    Liu J, Zanardi S, Powers S, Suman M. Development and practical application in the cereal food industry of a rapid and quantitative lateral flow immunoassay for deoxynivalenol. Food Control. 2012;26:88–91.CrossRefGoogle Scholar
  23. 23.
    Romanazzo D, Ricci F, Volpe G, Elliott CT, Vesco S, Kroeger K, et al. Development of a recombinant Fab-fragment based electrochemical immunosensor for deoxynivalenol detection in food samples. Biosens Bioelectron. 2010;25:2615–21.CrossRefGoogle Scholar
  24. 24.
    Lu L, Seenivasan R, Wang Y-C, Yu J-H, Gunasekaran S. An electrochemical immunosensor for rapid and sensitive detection of mycotoxins fumonisin B1 and deoxynivalenol. Electrochim Acta. 2016;213:89–97.CrossRefGoogle Scholar
  25. 25.
    Olcer Z, Esen E, Muhammad T, Ersoy A, Budak S, Uludag Y. Fast and sensitive detection of mycotoxins in wheat using microfluidics based real-time electrochemical profiling. Biosens Bioelectron. 2014;62:163–9.CrossRefGoogle Scholar
  26. 26.
    Zhilei W, Xiulan S, Zaijun L, Yinjun F, Guoxioa R, Yaru H, et al. Highly sensitive deoxynivalenol immunosensor based on a glassy carbon electrode modified with a fullerene/ferrocene/ionic liquid composite. Microchim Acta. 2011;172:365–71.CrossRefGoogle Scholar
  27. 27.
    Han M, Liu S, Bao J, Dai Z. Pd nanoparticle assemblies—as the substitute of HRP, in their biosensing applications for H2O2 and glucose. Biosens Bioelectron. 2012;31:151–6.CrossRefGoogle Scholar
  28. 28.
    Wang J, Liu G, Merkoçi A. Electrochemical coding technology for simultaneous detection of multiple DNA targets. J Am Chem Soc. 2003;125:3214–5.CrossRefGoogle Scholar
  29. 29.
    Liu G, Wang J, Kim J, Jan M-R. Electrochemical coding for multiplexed immunoassays of proteins. Anal Chem. 2004;76(23):7126–30.CrossRefGoogle Scholar
  30. 30.
    Valera E, Muriano A, Pividori MI, Sanchez-Baeza F, Marco M-P. Development of a Coulombimetric immunosensor based on specific antibodies labeled with CdS nanoparticles for sulfonamide antibiotic residues analysis and its application to honey samples. Biosens Bioelectron. 2013;43:211–7.CrossRefGoogle Scholar
  31. 31.
    Valera E, García-Febrero R, Pividori I, Sánchez-Baeza F, Marco M-P. Coulombimetric immunosensor for paraquat based on electrochemical nanoprobes. Sensors Actuators B. 2014;194:353–60.CrossRefGoogle Scholar
  32. 32.
    Zacco E, Pividori MI, Alegret S, Galve R, Marco M-P. Electrochemical magnetoimmunosensing strategy for the detection of pesticides residues. Anal Chem. 2006;78(6):1780–8.CrossRefGoogle Scholar
  33. 33.
    Xiao H, Clarke JR, Marquardt RR, Frohlich AA. Improved methods for conjugating selected mycotoxins to carrier proteins and dextran for immunoassays. J Agric Food Chem. 1995;43:2092–7.CrossRefGoogle Scholar
  34. 34.
    Xu Y, Huang Z-B, He Q-H, Deng S-Z, Li L-S, Li Y-P. Development of an immunochromatographic strip test for the rapid detection of deoxynivalenol in wheat and maize. Food Chem. 2010;119:834–9.CrossRefGoogle Scholar
  35. 35.
    Adrian J, Font H, Diserens J-M, Sanchez-Baeza F, Marco M-P. Generation of broad specificity antibodies for sulfonamide antibiotics and development of an enzyme-linked immunosorbent assay (ELISA) for the analysis of milk samples. J Agric Food Chem. 2009;57:385–94.CrossRefGoogle Scholar
  36. 36.
    Maggio ET. Enzyme-immunoassay (2nd Ed.). 2nd ed. Florida: CRC Press; 1981.Google Scholar
  37. 37.
    Willner I, Patolsky F, Wasserman J. Photoelectrochemistry with controlled DNA-cross-linked CdS nanoparticle arrays. Angew Chem. 2001;40(10):1861–4.CrossRefGoogle Scholar
  38. 38.
    Sehgal D, Vijay IK. A method for the high efficiency of water-soluble carbodiimide-mediated amidation. Anal Biochem. 1994;218:87–91.CrossRefGoogle Scholar
  39. 39.
    Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72(1–2):248–54.CrossRefGoogle Scholar
  40. 40.
    Kolberg DIS, Mack D, Anastassiades M, Hetmanski MT, Fussell RJ, Meijer T, et al. Development and independent laboratory validation of a simple method for the determination of paraquat and diquat in potato, cereals and pulses. Anal Bioanal Chem. 2012;404(8):2465–74.CrossRefGoogle Scholar
  41. 41.
    Huang Z-B, Xu Y, Li L-S, Li Y-P, Zhang H, He Q-H. Development of an immunochromatographic strip test for the rapid simultaneous detection of deoxynivalenol and zearalenone in wheat and maize. Food Control. 2012;28:7–12.CrossRefGoogle Scholar
  42. 42.
    Ji F, Li H, Xu J, Shi J. Enzyme-linked immunosorbent-assay for deoxynivalenol (DON). Toxins. 2011;3:968–78.CrossRefGoogle Scholar
  43. 43.
    Xia S, Zhu P, Pi F, Zhang Y, Li Y, Wang J, et al. Development of a simple and convenient cell-based electrochemical biosensor for evaluating the individual and combined toxicity of DON, ZEN, and AFB1. Biosens Bioelectron. 2017;97:345–51.CrossRefGoogle Scholar
  44. 44.
    Zheng H, Yi H, Dai H, Fang D, Hong Z, Lin D, et al. Fluoro-coumarin silicon phthalocyanine sensitized integrated electrochemiluminescence bioprobe constructed on TiO2 MOFs for the sensing of deoxynivalenol. Sensors Actuators B. 2018;269:27–35.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Enrique Valera
    • 1
    • 2
    • 3
    Email author
  • Raül García-Febrero
    • 1
    • 2
  • Christopher T. Elliott
    • 4
  • Francisco Sánchez-Baeza
    • 1
    • 2
  • M.-P. Marco
    • 1
    • 2
  1. 1.CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN)BarcelonaSpain
  2. 2.Nanobiotechnology for Diagnostics (Nb4D) groupIQAC-CSICBarcelonaSpain
  3. 3.Department of BioengineeringUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  4. 4.The Institute for Global Food Security, School of Biological SciencesQueen’s UniversityBelfastUK

Personalised recommendations