Analytical and Bioanalytical Chemistry

, Volume 411, Issue 4, pp 905–913 | Cite as

An ultrasensitive signal-on electrochemiluminescence biosensor based on Au nanoclusters for detecting acetylthiocholine

  • Cong Zhang
  • Yu Fan
  • Han Zhang
  • Shihong ChenEmail author
  • Ruo Yuan
Research Paper


For improving the sensitivity of the electrochemiluminescent (ECL) detection and extending the applications of luminophore, the development of coreactant accelerator is one of the important ways. In this work, Au nanoclusters (Au NCs) were chosen as the luminescent material, and thiocholine, which was in situ generated by enzymatic reaction, was found to serve as a coreactant accelerator for Au NC-S2O82− ECL system. Based on this discovery, a highly sensitive detection of acetylthiocholine (ATCl) was achieved using the acetylcholinesterase (AChE) biosensor. CeO2 nanowires (CeO2 NWs) were used to improve the stability of Au NCs on the glassy carbon electrode (GCE) due to the large specific surface area and good film-forming properties of CeO2 NWs. ATCl was catalyzed by acetylcholinesterase (AChE) to produce thiocholine, which served as the coreactant accelerator to improve the ECL signal of Au NC-S2O82− system. The biosensor obtained a low detection limit of 0.17 nM. The integration of thiocholine and Au NCs would provide a new ECL platform for bioanalysis.

Graphical abstract


Electrochemiluminescence Biosensor Au nanoclusters Acetylthiocholine Thiocholine 


Funding information

This work was supported by National Natural Science Foundation of China (21775122, 21775123, 51473136, 21575116) and Nature Science Foundation of Chongqing City (cstc2018jcyjAX0693) China.

Compliance with ethical standards

Informed consent

The 9th People’s Hospital of Chongqing Committee approved our studies, and all volunteers gave informed consent.

Conflict of interest

The authors declare that they have no conflict interest.


  1. 1.
    Mileson BE, Chambers JE, Chen WL, Dettbarn W, Ehrich M, Eldefrawi AT, et al. Common mechanism of toxicity: a case study of organophosphorus pesticides. Toxicol Sci. 1998;41:8–20.Google Scholar
  2. 2.
    Zhang SX, Xue SF, Deng JJ, Zhang M, Shi GY, Zhou TS. Polyacrylic acid-coated cerium oxide nanoparticles: an oxidase mimic applied for colorimetric assay to organophosphorus pesticides. Biosens Bioelectron. 2016;85:457–63.CrossRefGoogle Scholar
  3. 3.
    Wang CI, Chen WT, Chang HT. Enzyme mimics of Au/Ag nanoparticles for fluorescent detection of acetylcholine. Anal Chem. 2012;84:9706–12.CrossRefGoogle Scholar
  4. 4.
    Liao SZ, Han WT, Ding HZ, Xie DX, Tan H, Yang SY, et al. Modulated dye retention for the signal-on fluorometric determination of acetylcholinesterase inhibitor. Anal Chem. 2013;85:4968–73.CrossRefGoogle Scholar
  5. 5.
    Wu XP, Zhong X, Chai YQ, Yuan R. Electrochemiluminescence acetylcholine biosensor based on biofunctional AMs-AChE-ChO biocomposite and electrodeposited graphene-Au-chitosan nanocomposite. Electrochim Acta. 2014;147:735–42.CrossRefGoogle Scholar
  6. 6.
    Liu GD, Lin YH. Biosensor based on self-assembling acetylcholinesterase on carbon nanotubes for flow injection/amperometric detection of organophosphate pesticides and nerve agents. Anal Chem. 2006;78:835–43.CrossRefGoogle Scholar
  7. 7.
    Qian SH, Lin HW. Colorimetric sensor array for detection and identification of organophosphorus and carbamate pesticides. Anal Chem. 2015;87:5395–400.CrossRefGoogle Scholar
  8. 8.
    Meng XW, Wei JF, Ren XL, Ren J, Tang FL. A simple and sensitive fluorescence biosensor for detection of organophosphorus pesticides using H2O2-sensitive quantum dots/bi-enzyme. Biosens Bioelectron. 2013;47:402–7.CrossRefGoogle Scholar
  9. 9.
    Yi YH, Zhu GB, Liu C, Huang Y, Zhang YY, Li HT, et al. A label-free silicon quantum dots-based photoluminescence sensor for ultrasensitive detection of pesticides. Anal Chem. 2013;85:11464–70.CrossRefGoogle Scholar
  10. 10.
    Chen HM, Zhang H, Yuan R, Chen SH. Novel double-potential electrochemiluminescence ratiometric strategy in enzyme-based inhibition biosensing for sensitive detection of organophosphorus pesticides. Anal Chem. 2017;89:2823–9.CrossRefGoogle Scholar
  11. 11.
    Richter M. Electrochemiluminescence (ECL). Chem Rev. 2004;104:3003–36.CrossRefGoogle Scholar
  12. 12.
    Li LL, Chen Y, Zhu JJ. Recent advances in electrochemiluminescence analysis. Anal Chem. 2017;89:358–71.CrossRefGoogle Scholar
  13. 13.
    Tian R, Zhang ST, Li MW, Zhou YQ, Lu B, Yan DP, et al. Localization of Au nanoclusters on layered double hydroxides nanosheets: confinement-induced emission enhancement and temperature-responsive luminescence. Adv Funct Mater. 2015;25:5006–15.CrossRefGoogle Scholar
  14. 14.
    Tao Y, Li MQ, Ren JS, Qu XG. Metal nanoclusters: novel probes for diagnostic and therapeutic applications. Chem Soc Rev. 2015;44:8636–63.CrossRefGoogle Scholar
  15. 15.
    Zhao M, Chen AY, Huang D, Zhuo Y, Chai YQ, Yuan R. Cu nanoclusters: novel electrochemiluminescence emitters for bioanalysis. Anal Chem. 2016;88:11527–32.CrossRefGoogle Scholar
  16. 16.
    Hesari M, Workentin MS, Ding ZF. Highly efficient electrogenerated chemiluminescence of Au38 nanoclusters. ACSNANO. 2014;8:8543–53.Google Scholar
  17. 17.
    Li LL, Liu HY, Shen YY, Zhang JR, Zhu JJ. Electrogenerated chemiluminescence of Au nanoclusters for the detection of dopamine. Anal Chem. 2011;83:661–5.CrossRefGoogle Scholar
  18. 18.
    Lv XH, Ma HM, Wu D, Yan T, Ji L, Liu YX, et al. Novel gold nanocluster electrochemiluminescence immunosensors based on nanoporous NiGd–Ni2O3–Gd2O3 alloys. Biosens Bioelectron. 2016;75:142–7.CrossRefGoogle Scholar
  19. 19.
    Chen SH, Fan Y, Zhang C, He YY, Wei SP. Quenched solid-state electrochemiluminescence of gold nanoclusters and the application in the ultrasensitive detection of concanavalin A. Electrochim Acta. 2017;228:195–202.CrossRefGoogle Scholar
  20. 20.
    Hussain S, Al-Nsour F, Rice AB, Marshburn J, Yingling B, Ji ZX, et al. Cerium dioxide nanoparticles induce apoptosis and autophagy in human peripheral blood monocytes. ACSNANO. 2012;6(7):5820–9.Google Scholar
  21. 21.
    Kaushik A, Solanki PR, Pandey MK, Ahmad S, Malhotra BD. Cerium oxide-chitosan based nanobiocomposite for food borne mycotoxin detection. Appl Phys Lett. 2009;95:173703.CrossRefGoogle Scholar
  22. 22.
    Hammond OS, Edler KJ, Bowron DT, Torrente-Murciano L. Deep eutectic-solvothermal synthesis of nanostructured ceria. Nature Com. 2016;8:14150.CrossRefGoogle Scholar
  23. 23.
    Tana ZML, Li J, Li HJ, Li Y, Shen WJ. Morphology-dependent redox and catalytic properties of CeO2 nanostructures: nanowires, nanorods and nanoparticles. Catal Today. 2009;148:179–83.CrossRefGoogle Scholar
  24. 24.
    Zhou Y, Chen MX, Zhuo Y, Chai YQ, Xu WJ, Yuan R. In situ electrodeposited synthesis of electrochemiluminescent Ag nanoclusters as signal probe for ultrasensitive detection of cyclinD1 from cancer cells. Anal Chem. 2017;89:6787–93.CrossRefGoogle Scholar
  25. 25.
    Wang JX, Zhuo Y, Zhou Y, Wang HJ, Yuan R, Chai YQ. Ceria doped zinc oxide nanoflowers enhanced luminol-based electrochemiluminescence immunosensor for amyloid-β detection. ACS Appl Mater Interfaces. 2016;8:12968–75.CrossRefGoogle Scholar
  26. 26.
    Ke J, Zhu W, Jiang YY, Si R, Wang YJ, Li SC, et al. Strong local coordination structure effects on subnanometer PtOx clusters over CeO2 nanowires probed by low-temperature CO oxidation. ACS Cata. 2015;5:5164–73.CrossRefGoogle Scholar
  27. 27.
    Xie JP, Zheng YG, Ying JY. Protein-directed synthesis of highly fluorescent gold nanoclusters. J Am Chem Soc. 2009;131:888–9.CrossRefGoogle Scholar
  28. 28.
    Shu T, Wang JX, Su L, Zhang XJ. Chemical etching of bovine serum albumin-protected Au25 nanoclusters for label-free and separation-free ratiometric fluorescent detection of tris(2-carboxyethyl)phosphine. Anal Chem. 2016;88:11193–8.CrossRefGoogle Scholar
  29. 29.
    Ma MN, Zhuo Y, Yuan R, Chai YQ. New signal amplification strategy using semicarbazide as coreaction accelerator for highly sensitive electrochemiluminescent aptasensor construction. Anal Chem. 2015;87:11389–97.CrossRefGoogle Scholar
  30. 30.
    Li JZ, Wang NY, Tran TT, Huang CA, Chen L, Yuan LJ, et al. Electrogenerated chemiluminescence detection of trace level pentachlorophenol using carbon quantum dots. Analyst. 2013;138:2038–43.CrossRefGoogle Scholar
  31. 31.
    Du D, Huang X, Cai J, Zhang AD, Ding JW, Chen SZ. An amperometric acetylthiocholine sensor based on immobilization of acetylcholinesterase on a multiwall carbon nanotube–cross-linked chitosan composite. Anal Bioanal Chem. 2007;387(3):1059–65.CrossRefGoogle Scholar
  32. 32.
    Cumpu MB, Nesakumar N, Nagarajan S, Ramanujam S, Krishnan UM, Babu KJ, et al. Design and development of acetylthiocholine electrochemical biosensor based on zinc oxide–cerium oxide nanohybrid modified platinum electrode. Bull Environ Contam. 2017;98:662–71.CrossRefGoogle Scholar
  33. 33.
    Yang YH, Guo MM, Yang MH, Wang ZJ, Shen GL, Yu RQ. Determination of pesticides in vegetable samples using an acetylcholinesterase biosensor based on nanoparticles ZrO2/chitosan composite film. Int J Environ Anal Chem. 2005;85:163–75.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Cong Zhang
    • 1
  • Yu Fan
    • 1
  • Han Zhang
    • 1
  • Shihong Chen
    • 1
    Email author
  • Ruo Yuan
    • 1
  1. 1.Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, College of Chemistry and Chemical EngineeringSouthwest UniversityChongqingChina

Personalised recommendations