Advertisement

Analytical and Bioanalytical Chemistry

, Volume 411, Issue 4, pp 823–833 | Cite as

The first application of quantitative 1H NMR spectroscopy as a simple and fast method of identification and quantification of microplastic particles (PE, PET, and PS)

  • Nadine Peez
  • Marie-Christine Janiska
  • Wolfgang ImhofEmail author
Paper in Forefront
  • 225 Downloads

Abstract

Microplastic (0.001–5 mm) is a serious problem for the environment and is globally distributed. It has been detected in marine and limnic waters as well as in organisms. Until now, microplastic (MP) particles in environmental samples are mainly identified by Fourier transform infrared (FTIR) or Raman spectroscopy. Usually, for quantitative detection, time-consuming counting of MP particles in the sample is described. Therefore, a great need for research in the field of size-independent quantitative analysis of MP particles is evident. We present herein the application of quantitative 1H NMR spectroscopy (qNMR) as a new method for the qualitative and quantitative analysis of MP in solution. Polyethylene (PE) granules with a size distribution of < 300 μm, polyethylene terephthalate (PET) fibers with a length of approx. 500 μm, and polystyrene (PS) beads with a size distribution of 0.5–1 mm were qualitatively and quantitatively analyzed as prototypical MP particles in model samples using a calibration curve method. As internal standard, the residual proton signal of the deuterated solvent was used. For all polymer types, linearity of the method is > 0.994 R2, and the precision is in the range of 99.4–99.9%. The limit of detection (LOD) is in the range of 19–21 μg/mL and the limit of the quantification (LOQ) is in the range of 74–85 mg/mL, so the LOD and LOQ are observed in an environmentally relevant size. In this work, we therefore show that size-independent qualitative and quantitative determination of microplastic particles in model samples using qNMR is possible.

Graphical abstract

Working flow for the first application of qNMR as a simple and fast method of identification and quantification of microplastic (MP) particles (PE, PET, PS). 338 × 190 mm (96 × 96 DPI)

Keywords

Microplastic Quantification qNMR Calibration curve method 

Notes

Acknowledgements

The authors gratefully acknowledge support of the Deutsche Forschungsgemeinschaft (INST 366/6-1) for the purchase of the NMR spectrometer.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Supplementary material

216_2018_1510_MOESM1_ESM.pdf (77 kb)
ESM 1 (PDF 77 kb)

References

  1. 1.
    Geyer R, Jambeck JR, Law KL. Production, use, and fate of all plastics ever made. Sci Adv. 2017;3:e1700782.CrossRefGoogle Scholar
  2. 2.
    Eerkes-Medrano D, Thompson RC, Aldridge DC. Microplastics in freshwater systems: a review of the emerging threats, identification of knowledge gaps and prioritisation of research needs. Water Res. 2015;75:63–82.CrossRefGoogle Scholar
  3. 3.
    Zhang K, Xiong X, Hu H, Wu C, Bi Y, Wu Y, et al. Occurrence and characteristics of microplastic pollution in Xiangxi Bay of Three Gorges Reservoir. China Environ Sci Technol. 2017;51:3794–801.CrossRefGoogle Scholar
  4. 4.
    Eriksen M, Mason S, Wilson S, Box C, Zellers A, Edwars W, et al. Microplastic pollution in the surface waters of the Laurentian Great Lakes. Mar Pollut Bull. 2013;77:177–82.CrossRefGoogle Scholar
  5. 5.
    Hidalgo-Ruz V, Gutow L, Thompson RC, Thiel M. Microplastics in the marine environment: a review of the methods used for identification and quantification. Environ Sci Technol. 2012;46:3060–75.CrossRefGoogle Scholar
  6. 6.
    Klein S, Worch E, Knepper TP. Occurrence and spatial distribution of microplastics in river shore sediments of the Rhine-Main Area in Germany. Environ Sci Technol. 2015;49:6070–6.CrossRefGoogle Scholar
  7. 7.
    Wagner M, Lambert S (eds). Freshwater microplastics: emerging environmental contaminants? SpringerOpen. 2018.Google Scholar
  8. 8.
    Browne MA, Crump P, Niven SJ, Teuten E, Tonkin A, Galloway T, et al. Accumulation of microplastic on shorelines woldwide: sources and sinks. Environ Sci Technol. 2011;45:9175–9.CrossRefGoogle Scholar
  9. 9.
    Moore CJ, Moore SL, Leecaster MK, Weisberg SB. A comparison of plastic and plankton in the North Pacific central gyre. Mar Pollut Bull. 2001;42:1297–300.CrossRefGoogle Scholar
  10. 10.
    Wagner M, Scherer C, Alvarez-Munoz D, Brennholt N, Bourrain X, Buchinger S, et al. Microplastic in freshwater ecosystems: what we know and what we need to know. Environ Sci Eur. 2014;26:12.CrossRefGoogle Scholar
  11. 11.
    Goldstein MC, Titmus AJ, Ford M. Scales of spatial heterogeneity of plastic marine debris in the northeast Pacific Ocean. PLoS One. 2013;8:e80020.CrossRefGoogle Scholar
  12. 12.
    Barnes DKA, Galgani F, Thompson RC, Barlaz M. Accumulation and fragmentation of plastic debris in global environments. Phil Trans R Soc B. 2009;364:1985–98.CrossRefGoogle Scholar
  13. 13.
    Ivleva NP, Wiesheu AC, Niessner R. Microplastic in aquatic ecosystems. Angew Chem Int Ed. 2017;56:1720–39.CrossRefGoogle Scholar
  14. 14.
    Cole M, Lindeque P, Halsband C, Galloway TS. Microplastics as contaminants in the marine environment: a review. Mar Pollut Bull. 2011;62:2588–97.CrossRefGoogle Scholar
  15. 15.
    Zitko V, Hanlon M. Another source of pollution by plastics: skin cleaners with plastic scrubbers. Mar Pollut Bull. 1991;22:41–2.CrossRefGoogle Scholar
  16. 16.
    Grammes F. Mikroplastik-Studie 2016: Codecheck-Studie zu Mikroplastik in Kosmetika. Codecheck AG. 2016. https://corporate.codecheck.info/wp-content/uploads/2016/10/Codecheck_Mikroplastikstudie_2016.pdf. Accessed 15 Oct 2018.
  17. 17.
    Napper IE, Bakir A, Rowland SJ, Thompson RC. Characterisation, quantity and sorptive properties of microplastics extracted from cosmetics. Mar Pollut Bull. 2015;99:178–85.CrossRefGoogle Scholar
  18. 18.
    Ryan PG, Moore CJ, van Franeker JA, Moloney CL. Monitoring the abundance of plastic debris in the marine environment. Phil Trans R Soc B. 2009;364:1999–2012.CrossRefGoogle Scholar
  19. 19.
    Browne MA, Galloway T, Thompson R. Microplastic - an emerging contaminant of potential concern? Integr Environ Assess Manag. 2007;3:559–66.CrossRefGoogle Scholar
  20. 20.
    Sundt P, Schulze P-E, Syversen F. Sources of microplastic-pollution to the marine environment. Norwegian Environment Agency. 2014. http://www.miljodirektoratet.no/Documents/publikasjoner/M321/M321.pdf. Accessed 15 Oct 2018.
  21. 21.
    Napper IE, Thompson RC. Release of synthetic microplastic plastic fibres from domestic washing machines: effects of fabric type and washing conditions. Mar Pollut Bull. 2016;112:39–45.CrossRefGoogle Scholar
  22. 22.
    Industrievereinigung Chemiefaser. Weltproduktion von Chemiefasern - Aufteilung der verschiedenen Arten. 2016. https://www.ivc-ev.de/live/index.php?page_id=43. Accessed 10 July 2018.
  23. 23.
    Fendall LS, Sewell MA. Contributing to marine pollution by washing your face: microplastics in facial cleansers. Mar Pollut Bull. 2009;58:1225–8.CrossRefGoogle Scholar
  24. 24.
    Wright SL, Thompson RC, Galloway TS. The physical impacts of microplastics on marine organisms: a review. Environ Pollut. 2013;178:483–92.CrossRefGoogle Scholar
  25. 25.
    Zarfl C, Matthies M. Are marine plastic particles transport vectors for organic pollutants to the Arctic? Mar Pollut Bull. 2010;60:1810–4.CrossRefGoogle Scholar
  26. 26.
    Rochman CM, Tahir A, Williams SL, Baxa DV, Lam R, Miller JT, et al. Anthropogenic debris in seafood: plastic debris and fibers from textiles in fish and bivalves sold for human consumption. Sci Rep. 2015;5:1–10.CrossRefGoogle Scholar
  27. 27.
    Setälä O, Fleming-Lehtinen V, Lehtiniemi M. Ingestion and transfer of microplastics in the planktonic food web. Environ Pollut. 2014;185:77–83.CrossRefGoogle Scholar
  28. 28.
    Sheavly SB, Register KM. Marine debris & plastics: environmental concerns, sources, impacts and solutions. J Polym Environ. 2007;15:301–5.CrossRefGoogle Scholar
  29. 29.
    Wendt-Potthoff K, Imhof HK, Wagner M, Primpke S, Fischer D, Scholz-Böttcher BM, Laforsch C. Mikroplastik in Binnengewässern. Handbuch Angewandte Limnologie. 2017.Google Scholar
  30. 30.
    Ogonowski M, Schür C, Jarsen A, Gorokhova E. The effects of natural and anthropogenic microplasticles on individual fitness in Daphnia magna. PLoS One. 2016;11:e0155063.CrossRefGoogle Scholar
  31. 31.
    Welden NAC, Cowie PR. Long-term microplastic retention causes reduced body condition in the langoustine, Nephrops norvegicus. Environ Pollut. 2016;218:895–900.CrossRefGoogle Scholar
  32. 32.
    Browne MA, Niven SJ, Galloway TS, Rowland SJ, Thompson RC. Microplastic moves pollutants and additives to worms, reducing functions linked to health and biodiversity. Curr Biol. 2013;23:2388–92.CrossRefGoogle Scholar
  33. 33.
    Teuten EL, Saquing JM, Knappe DRU, Barlaz MA, Jonsson S, Björn A, et al. Transport and release of chemicals from plastics to the environment and to wildlife. Phil Trans R Soc B. 2009;364:2027–45.CrossRefGoogle Scholar
  34. 34.
    Dümichen E, Eisentraut P, Bannick CG, Barthel A-K, Senz R, Braun U. Fast identification of microplastics in complex environmental samples by a thermal degradation method. Chemosphere. 2017;174:572–84.CrossRefGoogle Scholar
  35. 35.
    Shim WJ, Hong SH, Eo SE. Identification methods in microplastic analysis: a review. Anal Methods. 2017;9:1384–91.CrossRefGoogle Scholar
  36. 36.
    Huppertsberg S, Knepper TP. Instrumental analysis of microplastics-benefits and challenges. Anal Bioanal Chem. 2018;410:6343–52.CrossRefGoogle Scholar
  37. 37.
    Löder MGJ, Kuczera M, Mintenig S, Lorenz C, Gerdts G. Focal plane array detector-based micro-Fourier-transform infrared imaging for the analysis of microplastics in environmental samples. Environ Chem. 2015;12:563.CrossRefGoogle Scholar
  38. 38.
    Käppler A, Windrich F, Löder MGJ, Malanin M, Fischer D, Labrenz M, et al. Identification of microplastics by FTIR and Raman microscopy: a novel silicon filter substrate opens the important spectral range below 1300 cm(-1) for FTIR transmission measurements. Anal Bioanal Chem. 2015;407:6791–801.CrossRefGoogle Scholar
  39. 39.
    Käppler A, Fischer D, Oberbeckmann S, Schernewski G, Labrenz M, Eichhorn K-J, et al. Analysis of environmental microplastics by vibrational microspectroscopy: FTIR, Raman or both? Anal Bioanal Chem. 2016;408:8377–91.CrossRefGoogle Scholar
  40. 40.
    Wang W, Wang J. Investigation of microplastics in aquatic environments: an overview of the methods used, from field sampling to laboratory analysis. TrAC. 2018;108:195–202.Google Scholar
  41. 41.
    Lenz R, Enders K, Stedmon CA, Mackenzie DMA, Nielsen TG. A critical assessment of visual identification of marine microplastic using Raman spectroscopy for analysis improvement. Mar Pollut Bull. 2015;100:82–91.CrossRefGoogle Scholar
  42. 42.
    Song YK, Hong SH, Jang M, Han GM, Rani M, Lee J, et al. A comparison of microscopic and spectroscopic identification methods for analysis of microplastics in environmental samples. Mar Pollut Bull. 2015;93:202–9.CrossRefGoogle Scholar
  43. 43.
    Hanvey JS, Lewis PJ, Lavers JL, Crosbie ND, Pozo K, Clarke BO. A review of analytical techniques for quantifying microplastics in sediments. Anal Methods. 2017;9:1369–83.CrossRefGoogle Scholar
  44. 44.
    Hohenblum P, Frischenschlager H, Reisinger H, Konecny R, Uhl M, Mühlegger S, Habersack H, Liedermann M, Gmeiner P, Weidenhiller B, Fischer N, Rindler R. Plastik in der Donau: Untersuchung zum Vorkommen von Kunststoffen in der Donau in Österreich. 2015Google Scholar
  45. 45.
    Dümichen E, Barthel A-K, Braun U, Bannick CG, Brand K, Jekel M, et al. Analysis of polyethylene microplastics in environmental samples, using a thermal decomposition method. Water Res. 2015;85:451–7.CrossRefGoogle Scholar
  46. 46.
    Fries E, Dekiff JH, Willmeyer J, Nuelle M-T, Ebert M, Remy D. Identification of polymer types and additives in marine microplastic particles using pyrolysis-GC/MS and scanning electron microscopy. Environ Sci: Processes Impacts. 2013;15:1949–56.Google Scholar
  47. 47.
    Fischer M, Scholz-Böttcher BM. Simultaneous trace identification and quantification of common types of microplastics in environmental samples by pyrolysis-gas chromatography–mass spectrometry. Environ Sci Technol. 2017;51:5052–60.CrossRefGoogle Scholar
  48. 48.
    Nuelle M-T, Dekiff JH, Remy D, Fries E. A new analytical approach for monitoring micrplastics in marine sediments. Environ Pollut. 2014;184:161–9.CrossRefGoogle Scholar
  49. 49.
    Hintersteiner I, Himmelsbach M, Buchberger WW. Characterization and quantitation of polyolefin microplastics in personal-care products using high-temperature gel-permeation chromatography. Anal Bioanal Chem. 2015;407:1253–9.CrossRefGoogle Scholar
  50. 50.
    Bharti SK, Roy R. Quantitative 1H NMR spectroscopy. TrAC. 2012;35:5–26.Google Scholar
  51. 51.
    Letot E, Koch G, Falchetto R, Bovermann G, Oberer L, Roth H-J. Quality control in combinatorial chemistry: determinations of amounts and comparison of the “purity” of LC-MS-purified samples by NMR, LC-UV and CLND. J Comb Chem. 2005;7:364–71.CrossRefGoogle Scholar
  52. 52.
    Pauli GF, Gödecke T, Jaki BU, Lankin DC. Quantitative 1H NMR: development and potential of an analytical method - an update. J Nat Prod. 2012;75:834–51.CrossRefGoogle Scholar
  53. 53.
    Pauli GF, Jaki BU, Lankin DC. Quantitative 1H NMR: development and potential of a method for natural products analysis. J Nat Prod. 2005;68:133–49.CrossRefGoogle Scholar
  54. 54.
    Schoenberger T. Determination of standard sample purity using the high-precision 1H-NMR process. Anal Bioanal Chem. 2012;403:247–54.CrossRefGoogle Scholar
  55. 55.
    Barding G, Salditos R, Larive C. Quantitative NMR for bioanalysis and metabolomics. Anal Bioanal Chem. 2012;404:1165–79.CrossRefGoogle Scholar
  56. 56.
    Schwedt G, Schmidt TC, Schmitz OJ, editors. Analytische Chemie. 3. Auflage. Weinheim: Wiley-VCH; 2016.Google Scholar
  57. 57.
    Phansalkar RS, Simmler C, Bisson J, Chen S-N, Lankin DC, McAlpine JB, et al. Evolution of quantitative measures in NMR: quantum mechanical qHNMR advances chemical standardization of a red clover (Trifolium pratense) extract. J Nat Prod. 2017;80:634–47.CrossRefGoogle Scholar
  58. 58.
    Monakhova Y, Diehl B. Practical guide for selection of 1H qNMR acquisition and processing parameters confirmed by automated spectra evaluation. Magn Reson Chem. 2017;55:996–1005.CrossRefGoogle Scholar
  59. 59.
    Cole M, Webb H, Lindeque PK, Fileman ES, Halsband C, Galloway TS. Isolation of microplastics in biota-rich seawater samples and marine organisms. Sci Rep. 2015;4:4528.CrossRefGoogle Scholar
  60. 60.
    Löder MGJ, Imhof HK, Ladehoff M. Enzymatic purification of microplastics in environmental samples. Environ Sci Technol. 2017;51:14283–92.CrossRefGoogle Scholar
  61. 61.
    Munno K, Helm PA, Jackson DA, Rochman C, Sims A. Impacts of temperature and selected chemical digestion methods on microplastic particles. Environ Toxicol Chem. 2017;9999:1–8.Google Scholar
  62. 62.
    Brandolini AJ, Hills DD, editors. NMR spectra of polymers and poylmer additives. New Jersey: Marcel Dekker, Inc.; 2000.Google Scholar
  63. 63.
    Nukada K. Analysis of the NMR spectrum of isotactic polypropylene. Polym Lett. 1965;3:179–83.CrossRefGoogle Scholar
  64. 64.
    de Ilarduya AM, Muñoz-Guerra S. Chemical structure and microstructure of poly(alkylene terephthalate)s, their copolyesters, and their blends as studied by NMR. Macromol Chem Phys. 2014;215:2138–60.CrossRefGoogle Scholar
  65. 65.
    Wilke S. Anteil Kunststoffsorten an der Verarbeitungsmenge Kunststoffe 2015. 2016. https://www.umweltbundesamt.de/sites/default/files/medien/384/bilder/dateien/3_abb_anteil-kunstst-verarbeitung-arten_2017-01-30_0.pdf. Accessed 10 July 2018.
  66. 66.
    Alves Filho EG, Silva LMA, Araújo NVP, Alves EG, Lião LM, Alcantara GB. Qualitative and quantitative control of pediatric syrups using nuclear magnetic resonance and chemometrics. J Pharm Biomed Anal. 2018;153:29–36.CrossRefGoogle Scholar
  67. 67.
    DIN 32645:2008-11. https://www.beuth.de/de/norm/din-32645/110729574. Accessed 3 Sept 2018.
  68. 68.
    DIN 38402-51:2017-05. https://www.beuth.de/de/norm/din-38402-51/272448891. Accessed 3 Sept 2018.
  69. 69.
    Cerceau CI, Barbosa LCA, Alvarenga ES, Ferreira AG, Thomasi SS. A validated 1H NMR method for quantitative analysis of α-bisabolol in essential oils of Eremanthus erythropappus. Talanta. 2016;161:71–9.CrossRefGoogle Scholar
  70. 70.
    Sun S, Jin M, Zhou X, Ni J, Jin X, Liu H, et al. The application of quantitative 1H-NMR for the determination of orlistat in tablets. Molecules. 2017;22:E1517.CrossRefGoogle Scholar
  71. 71.
    Moore CJ, Lattin GL, Zellers AF. Quantity and type of plastic debris flowing from two urban rivers to coastal waters and beaches of Southern California. J Integr Coast Zone Manag. 2011;11:65–73.Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Integrated Natural SciencesUniversity Koblenz-LandauKoblenzGermany

Personalised recommendations