Advertisement

Analytical and Bioanalytical Chemistry

, Volume 411, Issue 3, pp 755–763 | Cite as

High-throughput detection of low abundance sialylated glycoproteins in human serum by TiO2 enrichment and targeted LC-MS/MS analysis: application to a prostate cancer sample set

  • Caterina Gabriele
  • Francesco CantielloEmail author
  • Annalisa Nicastri
  • Fabio Crocerossa
  • Giorgio Ivan Russo
  • Antonio Cicione
  • Mihai D. Vartolomei
  • Matteo Ferro
  • Giuseppe Morgia
  • Giuseppe Lucarelli
  • Giovanni Cuda
  • Rocco Damiano
  • Marco GaspariEmail author
Research Paper

Abstract

Glycopeptide enrichment can be a strategy to allow the detection of peptides belonging to low abundance proteins in complex matrixes such as blood serum or plasma. Though several glycopeptide enrichment protocols have shown excellent sensitivities in this respect, few reports have demonstrated the applicability of these methods to relatively large sample cohorts. In this work, a fast protocol based on TiO2 enrichment and highly sensitive mass spectrometric analysis by Selected Reaction Monitoring (SRM) has been applied to a cohort of serum samples from prostate cancer and benign prostatic hyperplasia patients in order to detect low abundance proteins in a single LC-MS/MS analysis in nanoscale format, without immunodepletion or peptide fractionation. A peptide library of over 700 formerly N-glycosylated peptides was created by data dependent analysis. Then, 16 medium to low abundance proteins were selected for detection by single injection LC-MS/MS based on selected-reaction monitoring. Results demonstrated the consistent detection of the low-level proteins under investigation. Following label-free quantification, four proteins (Adipocyte plasma membrane-associated protein, Periostin, Cathepsin D and Lysosome-associated membrane glycoprotein 2) were found significantly increased in prostate cancer sera compared to the control group.

Graphical abstract

Keywords

Prostate cancer Serum proteomics APMAP CTSD LAMP2 POSTN 

Notes

Acknowledgements

MIUR, Programma Operativo Nazionale PON03PE_0009_2 “ICaRe”; POR Calabria FESR 2014-2020 “Innoprost”.

Compliance with ethical standards

Written informed consent was obtained from the patient for research use. The study was approved by the University of Catanzaro ethics committee.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

216_2018_1497_MOESM1_ESM.pdf (1.4 mb)
ESM 1 (PDF 1470 kb)
216_2018_1497_MOESM2_ESM.xls (485 kb)
ESM 2 (XLS 485 kb)

References

  1. 1.
    Tian Y, Zhang H. Glycoproteomics and clinical applications. Proteomics Clin Appl. 2010;4:124–32.  https://doi.org/10.1002/prca.200900161.CrossRefGoogle Scholar
  2. 2.
    Schiess R, Wollscheid B, Aebersold R. Targeted proteomic strategy for clinical biomarker discovery. Mol Oncol. 2009;3:33–44.  https://doi.org/10.1016/j.molonc.2008.12.001.CrossRefGoogle Scholar
  3. 3.
    Cima I, Schiess R, Wild P, Kaelin M, Schuffler P, Lange V, et al. Cancer genetics-guided discovery of serum biomarker signatures for diagnosis and prognosis of prostate cancer. Proc Natl Acad Sci. 2011;108:3342–7.  https://doi.org/10.1073/pnas.1013699108.CrossRefGoogle Scholar
  4. 4.
    Pan S, Chen R, Aebersold R, Brentnall T. Mass spectrometry based glycoproteomics from a proteomics perspective. Mol Cell Proteomics. 2011;10:R110.003251.  https://doi.org/10.1074/mcp.R110.003251.CrossRefGoogle Scholar
  5. 5.
    Liu M-Q, Zeng W-F, Fang P, Cao W-Q, Liu C, Yan G-Q, et al. pGlyco 2.0 enables precision N-glycoproteomics with comprehensive quality control and one-step mass spectrometry for intact glycopeptide identification. Nat Commun. 2017;8:438.  https://doi.org/10.1038/s41467-017-00535-2.CrossRefGoogle Scholar
  6. 6.
    Liu G, Cheng K, Lo CY, Li J, Qu J, Neelamegham S. A comprehensive, open-source platform for mass spectrometry-based glycoproteomics data analysis. Mol Cell Proteomics. 2017;16:2032–47.  https://doi.org/10.1074/mcp.M117.068239.CrossRefGoogle Scholar
  7. 7.
    Lakbub JC, Su X, Zhu Z, Patabandige MW, Hua D, Go EP, et al. Two new tools for glycopeptide analysis researchers: a glycopeptide decoy generator and a large data set of assigned CID spectra of glycopeptides. J Proteome Res. 2017;16:3002–8.  https://doi.org/10.1021/acs.jproteome.7b00289.CrossRefGoogle Scholar
  8. 8.
    Totten SM, Feasley CL, Bermudez A, Pitteri SJ. Parallel comparison of N-linked glycopeptide enrichment techniques reveals extensive glycoproteomic analysis of plasma enabled by SAX-ERLIC. J Proteome Res. 2017;16(3):1249–60.  https://doi.org/10.1021/acs.jproteome.6b00849.CrossRefGoogle Scholar
  9. 9.
    Park GW, Kim JY, Hwang H, Lee JY, Ahn YH, Lee HK, et al. Integrated GlycoProteome analyzer (I-GPA) for automated identification and quantitation of site-specific N-glycosylation. Sci Rep. 2016;6:21175.  https://doi.org/10.1038/srep21175.CrossRefGoogle Scholar
  10. 10.
    Dong X, Qin H, Mao J, Yu D, Li X, Shen A, et al. In-depth analysis of glycoprotein sialylation in serum using a dual-functional material with superior hydrophilicity and switchable surface charge. Anal Chem. 2017;89:3966–72.  https://doi.org/10.1021/acs.analchem.6b04394.CrossRefGoogle Scholar
  11. 11.
    Tian Y, Zhou Y, Elliott S, Aebersold R, Zhang H. Solid-phase extraction of N-linked glycopeptides. Nat Protoc. 2007;2:334–9.  https://doi.org/10.1038/nprot.2007.42.CrossRefGoogle Scholar
  12. 12.
    Zhang H, Liu AY, Loriaux P, Wollscheid B, Zhou Y, Watts JD, et al. Mass spectrometric detection of tissue proteins in plasma. Mol Cell Proteomics. 2007;6:64–71.  https://doi.org/10.1074/mcp.M600160-MCP200.CrossRefGoogle Scholar
  13. 13.
    Shah AK, Cao K-AL, Choi E, Chen D, Gautier B, Nancarrow D, et al. Serum glycoprotein biomarker discovery and qualification pipeline reveals novel diagnostic biomarker candidates for esophageal adenocarcinoma. Mol Cell Proteomics. 2015;14:3023–39.  https://doi.org/10.1074/mcp.M115.050922.CrossRefGoogle Scholar
  14. 14.
    Yin H, Tan Z, Wu J, Zhu J, Shedden KA, Marrero J, et al. Mass-selected site-specific core-fucosylation of serum proteins in hepatocellular carcinoma. J Proteome Res. 2015;14:4876–84.  https://doi.org/10.1021/acs.jproteome.5b00718.CrossRefGoogle Scholar
  15. 15.
    Larsen MR, Jensen SS, L a J, Heegaard NHH. Exploring the sialiome using titanium dioxide chromatography and mass spectrometry. Mol Cell Proteomics. 2007;6:1778–87.  https://doi.org/10.1074/mcp.M700086-MCP200.CrossRefGoogle Scholar
  16. 16.
    Zhu J, Wang F, Cheng K, Dong J, Sun D, Chen R, et al. A simple integrated system for rapid analysis of sialic-acid-containing N-glycopeptides from human serum. Proteomics. 2013;13:1306–13.  https://doi.org/10.1002/pmic.201200367.CrossRefGoogle Scholar
  17. 17.
    Zhao X, Ma C, Han H, Jiang J, Tian F, Wang J, et al. Comparison and optimization of strategies for a more profound profiling of the sialylated N-glycoproteomics in human plasma using metal oxide enrichment. Anal Bioanal Chem. 2013;405:5519–29.  https://doi.org/10.1007/s00216-013-6971-5.CrossRefGoogle Scholar
  18. 18.
    Krishnan S, Whitwell HJ, Cuenco J, Gentry-Maharaj A, Menon U, Pereira SP, et al. Evidence of altered glycosylation of serum proteins prior to pancreatic cancer diagnosis. Int J Mol Sci. 2017;18:2670.  https://doi.org/10.3390/ijms18122670.CrossRefGoogle Scholar
  19. 19.
    Totten SM, Adusumilli R, Kullolli M, Tanimoto C, Brooks JD, Mallick P, et al. Multi-lectin affinity chromatography and quantitative proteomic analysis reveal differential glycoform levels between prostate cancer and benign prostatic hyperplasia sera. Sci Rep. 2018;8:6509.  https://doi.org/10.1038/s41598-018-24270-w.CrossRefGoogle Scholar
  20. 20.
    Kälin M, Cima I, Schiess R, Fankhauser N, Powles T, Wild P, et al. Novel prognostic markers in the serum of patients with castration-resistant prostate cancer derived from quantitative analysis of the Pten conditional knockout mouse proteome. Eur Urol. 2011;60:1235–43.  https://doi.org/10.1016/j.eururo.2011.06.038.CrossRefGoogle Scholar
  21. 21.
    Liu Y, Chen J, Sethi A, Li QK, Chen L, Collins B, et al. Glycoproteomic analysis of prostate cancer tissues by SWATH mass spectrometry discovers N-acylethanolamine acid amidase and protein tyrosine kinase 7 as signatures for tumor aggressiveness. Mol Cell Proteomics. 2014;13:1753–68.  https://doi.org/10.1074/mcp.M114.038273.CrossRefGoogle Scholar
  22. 22.
    Yang L, Nyalwidhe JO, Guo S, Drake RR, Semmes OJ. Targeted identification of metastasis-associated cell-surface sialoglycoproteins in prostate cancer. Mol Cell Proteomics. 2011;10:M110.007294.  https://doi.org/10.1074/mcp.M110.007294.CrossRefGoogle Scholar
  23. 23.
    Fabietti A, Gaspari M, Krishnan S, Quirino A, Liberto MC, Cuda G, et al. Shotgun proteomic analysis of two Bartonella quintana strains. Proteomics. 2013;13:1375–8.  https://doi.org/10.1002/pmic.201200165.CrossRefGoogle Scholar
  24. 24.
    Rappsilber J, Mann M, Ishihama Y. Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat Protoc. 2007;2:1896–906.  https://doi.org/10.1038/nprot.2007.261.CrossRefGoogle Scholar
  25. 25.
    Taverna D, Mignogna C, Gabriele C, Santise G, Donato G, Cuda G, et al. An optimized procedure for on-tissue localized protein digestion and quantification using hydrogel discs and isobaric mass tags: analysis of cardiac myxoma. Anal Bioanal Chem. 2017;409:2919–30.  https://doi.org/10.1007/s00216-017-0237-6.CrossRefGoogle Scholar
  26. 26.
    Egertson JD, MacLean B, Johnson R, Xuan Y, MacCoss MJ. Multiplexed peptide analysis using data-independent acquisition and skyline. Nat Protoc. 2015;10:887–903.  https://doi.org/10.1038/nprot.2015-055.CrossRefGoogle Scholar
  27. 27.
    Toren P, Venkateswaran V. Periprostatic adipose tissue and prostate cancer progression: new insights into the tumor microenvironment. Clin Genitourin Cancer. 2014;12:21–6.  https://doi.org/10.1016/j.clgc.2013.07.013.CrossRefGoogle Scholar
  28. 28.
    Albrektsen T, Richter HE, Clausen JT, Fleckner J. Identification of a novel integral plasma membrane protein induced during adipocyte differentiation. Biochem J. 2001;359:393–402.  https://doi.org/10.1042/bj3590393.CrossRefGoogle Scholar
  29. 29.
    Lee MJ, Heo SC, Shin SH, Kwon YW, Do EK, Suh D-S, et al. Oncostatin M promotes mesenchymal stem cell-stimulated tumor growth through a paracrine mechanism involving periostin and TGFBI. Int J Biochem Cell Biol. 2013;45:1869–77.  https://doi.org/10.1016/j.biocel.2013.05.027.CrossRefGoogle Scholar
  30. 30.
    Morra L, Moch H. Periostin expression and epithelial-mesenchymal transition in cancer: a review and an update. Virchows Arch. 2011;459:465–75.  https://doi.org/10.1007/s00428-011-1151-5.CrossRefGoogle Scholar
  31. 31.
    Liaudet-Coopman E, Beaujouin M, Derocq D, Garcia M, Glondu-Lassis M, Laurent-Matha V, et al. Cathepsin D: newly discovered functions of a long-standing aspartic protease in cancer and apoptosis. Cancer Lett. 2006;237:167–79.  https://doi.org/10.1016/j.canlet.2005.06.007.CrossRefGoogle Scholar
  32. 32.
    Cuervo AM, Dice JF. Lysosomes, a meeting point of proteins, chaperones, and proteases. J Mol Med (Berl). 1998;76:6–12.CrossRefGoogle Scholar
  33. 33.
    Saitoh O, Wang WC, Lotan R, Fukuda M. Differential glycosylation and cell surface expression of lysosomal membrane glycoproteins in sublines of a human colon cancer exhibiting distinct metastatic potentials. J Biol Chem. 1992;267:5700–11.Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Caterina Gabriele
    • 1
  • Francesco Cantiello
    • 2
    Email author
  • Annalisa Nicastri
    • 1
  • Fabio Crocerossa
    • 2
  • Giorgio Ivan Russo
    • 3
  • Antonio Cicione
    • 2
  • Mihai D. Vartolomei
    • 4
    • 5
  • Matteo Ferro
    • 4
  • Giuseppe Morgia
    • 3
  • Giuseppe Lucarelli
    • 6
  • Giovanni Cuda
    • 1
  • Rocco Damiano
    • 2
  • Marco Gaspari
    • 1
    Email author
  1. 1.Department of Experimental and Clinical MedicineMagna Graecia University of CatanzaroCatanzaroItaly
  2. 2.Urology UnitMagna Graecia University of CatanzaroCatanzaroItaly
  3. 3.Urology Section, Department of SurgeryUniversity of CataniaCataniaItaly
  4. 4.Department of UrologyEuropean Institute of OncologyMilanItaly
  5. 5.Department of Cell and Molecular BiologyUniversity of Medicine, Pharmacy, Sciences and TechnologyTargu MuresRomania
  6. 6.Urology, Andrology & Kidney Transplantation Unit, Department of Emergency & Organ TransplantationUniversity of BariBariItaly

Personalised recommendations