Construction of H2O2-responsive asymmetric 2D nanofluidic channels with graphene and peroxidase-mimetic V2O5 nanowires

  • Ling Zhang
  • Qianqian Tian
  • Lei Lin
  • Jinghong LiEmail author
Paper in Forefront
Part of the following topical collections:
  1. New Insights into Analytical Science in China


The flexible two-dimensional (2D) nanosheet structure, high specific surface, and unique electrical properties make graphene an emerging nano-building block for molecule-responsive nanochannels. Herein, we report a novel graphene and V2O5 nanowire–based porous asymmetric membrane, which shows excellent catalytic performance and sensitive and quick response for H2O2. Poly(diallyldimethylammonium chloride)–functionalized graphene nanosheets were made into restacked lamellar film with porous structure and high anion selectivity. V2O5 nanowire, a kind of enzyme-mimetic nanomaterial, was mounted on one side of the graphene membrane through a sequential vacuum filtration method. The V2O5 nanowires on the membrane have high catalytic activities for H2O2 reduction, with the Michealis-Menten constant (KM) of 1.74 mM, better than various reported peroxidase-based nanocomposites and peroxidase mimics. This composite membrane showed quick response to H2O2 within 5 s, with good reproducibility and high operational stability. The responsive linear range was from 10 μM to 1 mM, with the detection limit of 9.5 μM. This fabrication of 2D layered nanomaterials and enzyme mimics could be extended for developing novel smart molecule-responsive devices.

Graphical abstract


2D nanochannels Graphene V2O5 nanowires Porous membrane H2O2-responsive 


Funding information

This work was financially supported by the National Natural Science Foundation of China (No. 21621003, No. 21235004, No. 21327806), National Key Research and Development Program of China (No. 2016YFA0203101), and Tsinghua University Initiative Scientific Research Program.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

Supplementary material

216_2018_1494_MOESM1_ESM.pdf (631 kb)
ESM 1 (PDF 631 kb)


  1. 1.
    Moreau CJ, Dupuis JP, Revilloud J, Arumugam K, Vivaudou M. Coupling ion channels to receptors for biomolecule sensing. Nat Nanotechnol. 2008;3:620–5.CrossRefGoogle Scholar
  2. 2.
    Dekker C. Solid-state nanopores. Nat Nanotechnol. 2007;2:209–15.CrossRefGoogle Scholar
  3. 3.
    Hou X, Guo W, Jiang L. Biomimetic smart nanopores and nanochannels. Chem Soc Rev. 2011;40:2385–401.CrossRefGoogle Scholar
  4. 4.
    Chen D, Feng H, Li J. Graphene oxide: preparation, functionalization, and electrochemical applications. Chem Rev. 2012;112:6027–53.CrossRefGoogle Scholar
  5. 5.
    Huang X, Qi X, Boey F, Zhang H. Graphene-based composites. Chem Soc Rev. 2012;41:666–86.CrossRefGoogle Scholar
  6. 6.
    Chen X, Wang Y, Zhang Y, Chen Z, Liu Y, Li Z, et al. Sensitive electrochemical aptamer biosensor for dynamic cell surface N-glycan evaluation featuring multivalent recognition and signal amplification on a dendrimer–graphene electrode interface. Anal Chem. 2014;86:4278–86.CrossRefGoogle Scholar
  7. 7.
    Li D, Mueller MB, Gilje S, Kaner RB, Wallace GG. Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol. 2008;3:101–5.CrossRefGoogle Scholar
  8. 8.
    Yang X, Qiu L, Cheng C, Wu Y, Ma Z, Li D. Ordered gelation of chemically converted graphene for next-generation electroconductive hydrogel films. Angew Chem Int Ed. 2011;50:7325–466.CrossRefGoogle Scholar
  9. 9.
    Cheng Q, Wu M, Li M, Jiang L, Tang Z. Ultratough artificial nacre based on conjugated cross-linked graphene oxide. Angew Chem Int Ed. 2013;52:3750–5.CrossRefGoogle Scholar
  10. 10.
    Yeh CN, Raidongia K, Shao J, Yang Q, Huang J. On the origin of the stability of graphene oxide membranes in water. Nat Chem. 2015;7:166–70.CrossRefGoogle Scholar
  11. 11.
    Guo W, Cheng C, Wu Y, Jiang Y, Gao J, Li D, et al. Bio-inspired two-dimensional nanofluidic generators based on a layered graphene hydrogel membrane. Adv Mater. 2013;25:6064–8.CrossRefGoogle Scholar
  12. 12.
    Lin L, Zhang L, Wang L, Li J. Energy harvesting from enzymatic biowaste reaction through polyelectrolyte functionalized 2D nanofluidic channels. Chem Sci. 2016;7:3645–8.CrossRefPubMedGoogle Scholar
  13. 13.
    Wang Y, Li Z, Weber T, Hu D, Lin C, Li J, et al. In situ live cell imaging of multiple nucleotides exploiting DNA/RNA aptamers and graphene oxide nanosheets. Anal Chem. 2013;85:6775–82.CrossRefGoogle Scholar
  14. 14.
    Wang Y, Tang L, Li Z, Lin Y, Li Y. In situ simultaneous monitoring of ATP and GTP using graphene oxide nanosheets-based sensing platform in living cells. Nat Protoc. 2014;9:1944–55.CrossRefGoogle Scholar
  15. 15.
    Zhang L, Zhang Q, Li J. Layered titanate nanosheets intercalated with myoglobin for direct electrochemistry. Adv Funct Mater. 2007;17:1958–65.CrossRefGoogle Scholar
  16. 16.
    Zhao Y, Zheng Y, Kong R, Xia L, Qu F. Ultrasensitive electrochemical immunosensor based on horseradish peroxidase (HRP)-loaded silica-poly(acrylic acid) brushes for protein biomarker detection. Biosens Bioelectron. 2016;75:383–8.CrossRefGoogle Scholar
  17. 17.
    Zhang Q, Qiao Y, Hao F, Zhang L, Wu S, Li Y, et al. Fabrication of biocompatible and conductive platform based on single stranded-DNA/graphene nanocomposite for direct electrochemistry and electrocatalysis. Chem Eur J. 2010;16:8133–9.CrossRefGoogle Scholar
  18. 18.
    Dong H, Nie R, Hou X, Wang P, Yue J, Jiang L. Assembly of F0F1-ATPase into solid state nanoporous membrane. Chem Commun. 2011;47:3102–4.CrossRefGoogle Scholar
  19. 19.
    Lin L, Yan J, Li J. Small-molecule triggered cascade enzymatic catalysis in hour-glass shaped nanochannel reactor for glucose monitoring. Anal Chem. 2014;86:10546–51.CrossRefPubMedGoogle Scholar
  20. 20.
    Lu X, Wen Z, Li J. Hydroxyl-containing antimony oxide bromide nanorods combined with chitosan for biosensors. Biomaterials. 2006;27:5740–7.CrossRefGoogle Scholar
  21. 21.
    Lin Y, Ren J, Qu X. Catalytically active nanomaterials: a promising candidate for artificial enzymes. Acc Chem Res. 2014;47:1097–105.CrossRefGoogle Scholar
  22. 22.
    Gao L, Zhuang J, Nie L, Zhang J, Zhang Y, Gu N, et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol. 2007;2:577–83.CrossRefGoogle Scholar
  23. 23.
    Li J, Cheng G, Dong S. Direct electron transfer to cytochrome c oxidase in self-assembly monolayers on gold electrode. J Electroanal Chem. 1996;416:97–104.CrossRefGoogle Scholar
  24. 24.
    Luo J, Zhao D, Yang M, Qu F. Porous Ni3N nanosheet array as a catalyst for nonenzymatic amperometric determination of glucose. Microchim Acta. 2018;185:229–34.CrossRefGoogle Scholar
  25. 25.
    André R, Natálio F, Humanes M, Leppin J, Heinze K, Wever R, et al. V2O5 nanowires with an intrinsic peroxidase-like activity. Adv Funct Mater. 2011;21:501–9.CrossRefGoogle Scholar
  26. 26.
    Chen X, Tian X, Shin I, Yoon J. Fluorescent and luminescent probes for detection of reactive oxygen and nitrogen species. Chem Soc Rev. 2011;40:4783–804.CrossRefPubMedGoogle Scholar
  27. 27.
    Burks R, Hage D. Current trends in the detection of peroxide-based explosives. Anal Bioanal Chem. 2009;395:301–13.CrossRefGoogle Scholar
  28. 28.
    Hummers WS, Offeman RE. Preparation of graphitic oxide. J Am Chem Soc. 1958;80:1339–9.CrossRefGoogle Scholar
  29. 29.
    Marcelo G, Tarazona MP, Saiz E. Solution properties of poly (diallyldimethylammonium chloride) (PDDA). Polymer. 2005;46:2584–94.CrossRefGoogle Scholar
  30. 30.
    Stein D, Kruithof M, Dekker C. Surface-charge-governed ion transport in nanofluidic channels. Phys Rev Lett. 2004;93:035901.CrossRefGoogle Scholar
  31. 31.
    Karnik R, Castelino K, Fan R, Yang P, Majumdar A. Effects of biological reactions and modifications on conductance of nanofluidic channels. Nano Lett. 2005;5:1638–42.CrossRefGoogle Scholar
  32. 32.
    van der Heyden FHJ, Bonthuis DJ, Stein D, Meyer C, Dekker C. Power generation by pressure-driven transport of ions in nanofluidic channels. Nano Lett. 2007;7:1022–5.CrossRefGoogle Scholar
  33. 33.
    Lineweaver H, Burk D. The determination of enzyme dissociation constants. J Am Chem Soc. 1934;56:658–66.CrossRefGoogle Scholar
  34. 34.
    Tan X, Zhang J, Tan S, Zhao D, Huang Z, Mi Y, et al. Amperometric hydrogen peroxide biosensor based on horseradish peroxidase immobilized on Fe3O4/chitosan modified glassy carbon electrode. Electroanalysis. 2009;21:1514–20.CrossRefGoogle Scholar
  35. 35.
    Mao S, Long Y, Li W, Tu Y, Deng A. Core-shell structured Ag@C for direct electrochemistry and hydrogen peroxide biosensor applications. Biosens Bioelectron. 2013;48:258–62.CrossRefGoogle Scholar
  36. 36.
    Hao J, Zhang Z, Yang W, Lu B, Ke X, Zhang B, et al. In situ controllable growth of CoFe2O4 ferrite nanocubes on graphene for colorimetric detection of hydrogen peroxide. J Mater Chem A. 2013;1:4352–7.CrossRefGoogle Scholar
  37. 37.
    Mu J, Wang Y, Zhao M, Zhang L. Intrinsic peroxidase-like activity and catalase-like activity of Co3O4 nanoparticles. Chem Commun. 2012;48:2540–2.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Ling Zhang
    • 1
  • Qianqian Tian
    • 1
  • Lei Lin
    • 1
  • Jinghong Li
    • 1
    Email author
  1. 1.Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical BiologyTsinghua UniversityBeijingChina

Personalised recommendations