Advertisement

Molecular analysis of semen-like odor emitted by chestnut flowers using neutral desorption extractive atmospheric pressure chemical ionization mass spectrometry

  • Xiaoping Zhang
  • Yin Ji
  • Yi Zhang
  • Fen Liu
  • Honghan Chen
  • Jianchuan Liu
  • Eric Storr Handberg
  • Vitaliy V. Chagovets
  • Konstantin ChinginEmail author
Research Paper
Part of the following topical collections:
  1. New Insights into Analytical Science in China

Abstract

Knowledge about the chemical composition of floral volatile organic compounds (VOCs) is valuable in biological studies as well as for the flavor, cosmetic, and fragrance industries. The flowers of Chinese chestnut (Castanea mollissima) emit a distinctive semen-like odor; however, the chemical composition and biological role for the semen-like odor of chestnut flowers remain scarcely studied. Herein, we report the floral VOCs and the pollinators of chestnut flowers. A fast method based on a neutral desorption (ND) device coupled to extractive atmospheric pressure chemical ionization mass spectrometry (EAPCI-MS) was developed for the rapid identification of VOCs from freshly collected chestnut flowers without any chemical pretreatment. Chemical identification was performed using high-resolution MS analysis in combination with tandem MS analysis and whenever possible was confirmed by the analysis of standard reference compounds. Twenty volatiles were identified, most of which are nitrogen-containing. Out of the identified volatiles, 1-pyrroline is known to have a semen-like odor and is probably also responsible for the semen-like odor of the chestnut flowers. Four nitrogenous VOCs of chestnut flowers, including 1-pyrroline, 1-piperideine, 2-pyrrolidone, and phenethylamine, were also common in other semen-like odor flowers such as Photinia serrulata, Castanopsis sclerophylla, and Stemona japonica, suggesting similar chemical origin. The main visitors of chestnut flowers were dipteran species, such as Eristalis tenax, Eristalis arvorum, Episyrphus balteatus, Lucilia sericata, Chrysomya megacephala, Chrysochus asclepiadeus, and Adalia bipunctata. Our results suggest that the chestnut flowers and other semen-like odor flowers may present a new type of sapromyophily. This study also indicates that ND-EAPCI-MS provides more sensitive and simpler detection of many VOCs (particularly nitrogen-containing VOCs) than GC-MS and therefore can be used to complement traditional approaches for the higher chemical coverage of VOCs analysis.

Graphical abstract

Keywords

Chestnut flowers Semen-like odor Volatile organic compounds 1-Pyrroline Neutral desorption extractive atmospheric pressure chemical ionization mass spectrometry Identification 

Abbreviations

CID

Collision-induced dissociation

GC-MS

Gas chromatography-mass spectrometry

ND-EAPCI-MS

Neutral desorption extractive atmospheric pressure chemical ionization mass spectrometry

VOCs

Volatile organic compounds

Notes

Acknowledgements

This work was supported by grants from the National Natural Science Foundation of China (nos. 21520102007, 21605017), Russian Science Foundation grant (agreement no. 16-14-00029), the Science and Technology Planning Project at the Ministry of Science and Technology of Jiangxi Province (no. 20152ACB21021), the Research Fund of East China University of Technology (no. DHBK2016131), and 111 Project (D17006).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This study was approved by the Ethics Committee of East China University of Technology and performed in accordance with the ethical standards.

Informed consent

Informed consent was obtained from all the volunteers who participated in the olfactory experiments.

Supplementary material

216_2018_1487_MOESM1_ESM.pdf (720 kb)
ESM 1 (PDF 720 kb)

References

  1. 1.
    Adebesin F, Widhalm JR, Boachon B, Lefèvre F, Pierman B, Lynch JH, et al. Emission of volatile organic compounds from petunia flowers is facilitated by an ABC transporter. Science. 2017;356(6345):1386–8.CrossRefGoogle Scholar
  2. 2.
    Lucas-Barbosa D, van Loon JJ, Dicke M. The effects of herbivore-induced plant volatiles on interactions between plants and flower-visiting insects. Phytochemistry. 2011;72(13):1647–54.CrossRefGoogle Scholar
  3. 3.
    Schwab W, Davidovich-Rikanati R, Lewinsohn E. Biosynthesis of plant-derived flavor compounds. Plant J. 2008;54(4):712–32.CrossRefGoogle Scholar
  4. 4.
    Knudsen JT, Eriksson R, Gershenzon J, Ståhl B. Diversity and distribution of floral scent. Bot Rev. 2006;72(1):1–120.CrossRefGoogle Scholar
  5. 5.
    Jürgens A, Dötterl S, Meve U. The chemical nature of fetid floral odours in stapeliads (Apocynaceae-Asclepiadoideae-Ceropegieae). New Phytol. 2006;172(3):452–68.CrossRefGoogle Scholar
  6. 6.
    Jürgens A, Wee SL, Shuttleworth A, Johnson SD. Chemical mimicry of insect oviposition sites: a global analysis of convergence in angiosperms. Ecol Lett. 2013;16(9):1157–67.CrossRefGoogle Scholar
  7. 7.
    Chen G, Jürgens A, Shao L, Liu Y, Sun W, Xia C. Semen-like floral scents and pollination biology of a sapromyophilous plant Stemona japonica (Stemonaceae). J Chem Ecol. 2015;41(3):244–52.CrossRefGoogle Scholar
  8. 8.
    Naef A, Roy BA, Kaiser R, Honegger R. Insect-mediated reproduction of systemic infections by Puccinia arrhenatheri on Berberis vulgaris. New Phytol. 2002;154(3):717–30.CrossRefGoogle Scholar
  9. 9.
    Shuttleworth A. Smells like debauchery: the chemical composition of semen-like, sweat-like and faintly foetid floral odours in Xysmalobium (Apocynaceae: Asclepiadoideae). Biochem Syst Ecol. 2016;66:63–75.CrossRefGoogle Scholar
  10. 10.
    Zhang X, Chingin K, Zhong D, Luo L, Frankevich V, Chen H. Deciphering the chemical origin of the semen-like floral scents in three angiosperm plants. Phytochemistry. 2018;145:137–45.CrossRefGoogle Scholar
  11. 11.
    Robacker DC, Demilo AB, Voaden DJ. Mexican fruit fly attractants: effects of 1-pyrroline and other amines on attractiveness of a mixture of ammonia, methylamine, and putrescine. J Chem Ecol. 1997;23(5):1263–80.CrossRefGoogle Scholar
  12. 12.
    Robacker DC, Bartelt RJ. Chemicals attractive to Mexican fruit fly from Klebsiella pneumoniae and Citrobacter freundii cultures sampled by solid-phase microextraction. J Chem Ecol. 1997;23(12):2897–915.CrossRefGoogle Scholar
  13. 13.
    Yang Q, Ren L, Du G. Effects of ethephon, GA3 and nutrient elements on sex expression of Chinese chestnut. Sci Hortic. 1985;26(3):209–15.CrossRefGoogle Scholar
  14. 14.
    Shi Z, Stösser R. Reproductive biology of Chinese chestnut (Castanea mollissima Blume). Eur J Hortic Sci. 2005;70(2):96–103.Google Scholar
  15. 15.
    Wei B, Cui Y, Xu F, Ouyang J. Analysis on volatile profiles of chestnut flowers by GC-MS coupled with automatic thermal desorption. Food Ferment Ind. 2014;40(3):192–5.Google Scholar
  16. 16.
    Keesey IW, Barrett BA, Lin C-H, Lerch RN. Electroantennographic responses of the small chestnut weevil Curculio sayi (Coleoptera: Curculionidae) to volatile organic compounds identified from chestnut reproductive plant tissue. Environ Entomol. 2012;41(4):933–40.CrossRefGoogle Scholar
  17. 17.
    Cirlini M, Dall’Asta C, Silvanini A, Beghè D, Fabbri A, Galaverna G, et al. Volatile fingerprinting of chestnut flours from traditional Emilia Romagna (Italy) cultivars. Food Chem. 2012;134(2):662–8.CrossRefGoogle Scholar
  18. 18.
    Alissandrakis E, Tarantilis PA, Pappas C, Harizanis PC, Polissiou M. Investigation of organic extractives from unifloral chestnut (Castanea sativa L.) and eucalyptus (Eucalyptus globulus Labill.) honeys and flowers to identification of botanical marker compounds. LWT Food Sci Technol. 2011;44(4):1042–51.CrossRefGoogle Scholar
  19. 19.
    Yamaguchi K, Shibamoto T. Volatile constituents of the chestnut flower. J Agric Food Chem. 1980;28(1):82–4.CrossRefGoogle Scholar
  20. 20.
    Rosso MC, Liberto E, Spigolon N, Fontana M, Somenzi M, Bicchi C, et al. Evolution of potent odorants within the volatile metabolome of high-quality hazelnuts (Corylus avellana L.): evaluation by comprehensive two-dimensional gas chromatography coupled with mass spectrometry. Anal Bioanal Chem. 2018;410(15):3491–506.CrossRefGoogle Scholar
  21. 21.
    Tholl D, Boland W, Hansel A, Loreto F, Röse USR, Schnitzler J-P. Practical approaches to plant volatile analysis. Plant J. 2006;45(4):540–60.CrossRefGoogle Scholar
  22. 22.
    Molina-Calle M, Priego-Capote F, de Castro MDL. HS–GC/MS volatile profile of different varieties of garlic and their behavior under heating. Anal Bioanal Chem. 2016;408(14):3843–52.CrossRefGoogle Scholar
  23. 23.
    Li Y, Zhang H, Zhao Z, Tian Y, Liu K, Jie F, et al. Mass spectral chemical fingerprints reveal the molecular dependence of exhaust particulate matters on engine speeds. J Environ Sci. 2018;67:287–93.CrossRefGoogle Scholar
  24. 24.
    Zhu L, Yan J, Zhu Z, Ouyang Y, Zhang X, Zhang W, et al. Differential analysis of camphor wood products by desorption atmospheric pressure chemical ionization mass spectrometry. J Agric Food Chem. 2013;61(3):547–52.CrossRefGoogle Scholar
  25. 25.
    Li M, Jia B, Ding L, Hong F, Ouyang Y, Chen R, et al. Document authentication at molecular levels using desorption atmospheric pressure chemical ionization mass spectrometry imaging. J Mass Spectrom. 2013;48(9):1042–9.CrossRefGoogle Scholar
  26. 26.
    Yang S, Ding J, Zheng J, Hu B, Li J, Chen H, et al. Detection of melamine in milk products by surface desorption atmospheric pressure chemical ionization mass spectrometry. Anal Chem. 2009;81(7):2426–36.CrossRefGoogle Scholar
  27. 27.
    Covey TR, Thomson BA, Schneider BB. Atmospheric pressure ion sources. Mass Spectrom Rev. 2009;28(6):870–97.CrossRefGoogle Scholar
  28. 28.
    Chen H, Liang H, Ding J, Lai J, Huan Y, Qiao X. Rapid differentiation of tea products by surface desorption atmospheric pressure chemical ionization mass spectrometry. J Agric Food Chem. 2007;55(25):10093–100.CrossRefGoogle Scholar
  29. 29.
    Chingin K, Liang J, Hang Y, Hu L, Chen H. Rapid recognition of bacteremia in humans using atmospheric pressure chemical ionization mass spectrometry of volatiles emitted by blood cultures. RSC Adv. 2015;5(18):13952–7.CrossRefGoogle Scholar
  30. 30.
    Zhang X, Chingin K, Zhong D, Liang J, Ouyang Y, Chen H. On the chemistry of 1-pyrroline in solution and in the gas phase. Sci Rep. 2017;7(1):7675.CrossRefGoogle Scholar
  31. 31.
    Siegmund B, Murkovic M. Changes in chemical composition of pumpkin seeds during the roasting process for production of pumpkin seed oil (part 2: volatile compounds). Food Chem. 2004;84(3):367–74.CrossRefGoogle Scholar
  32. 32.
    Kumar S, Bhandari C, Sharma P, Agnihotri N. Role of piperine in chemoresistance. In: Bharti AC, Aggarwal BB, editors. Role of nutraceuticals in cancer chemosensitization. India: Academic; 2018. p. 259–86.CrossRefGoogle Scholar
  33. 33.
    Kfoury N, Morimoto J, Kern A, Scott ER, Orians CM, Ahmed S, et al. Striking changes in tea metabolites due to elevational effects. Food Chem. 2018;264:334–41.CrossRefGoogle Scholar
  34. 34.
    Alasalvar C, Topal B, Serpen A, Bahar B, Pelvan E, Gökmen V. Flavor characteristics of seven grades of black tea produced in Turkey. J Agric Food Chem. 2012;60(25):6323–32.CrossRefGoogle Scholar
  35. 35.
    Yang Y, Battesti M-J, Djabou N, Muselli A, Paolini J, Tomi P, et al. Melissopalynological origin determination and volatile composition analysis of Corsican “chestnut grove” honeys. Food Chem. 2012;132(4):2144–54.CrossRefGoogle Scholar
  36. 36.
    Jakubska-Busse A, Jasicka-Misiak I, Poliwoda A, Świeczkowska E, Kafarski P. The chemical composition of the floral extract of Epipogium aphyllum sw.(Orchidaceae): a clue for their pollination biology. Arch Biol Sci. 2014;66(3):989–98.CrossRefGoogle Scholar
  37. 37.
    Nanni V, Canuti L, Gismondi A, Canini A. Hydroalcoholic extract of Spartium junceum L. flowers inhibits growth and melanogenesis in B16-F10 cells by inducing senescence. Phytomedicine. 2018;46:1–10.CrossRefGoogle Scholar
  38. 38.
    Lei G, Wang L, Liu X, Zhang A. Chemical composition of essential oils and hydrosols from fresh flowers of Cerasus subhirtella and Cerasus serrulata from East China. Nat Prod Res. 2014;28(21):1923–5.CrossRefGoogle Scholar
  39. 39.
    Agostinelli E, Arancia G, Dalla Vedova L, Belli F, Marra M, Salvi M, et al. The biological functions of polyamine oxidation products by amine oxidases: perspectives of clinical applications. Amino Acids. 2004;27(3–4):347–58.CrossRefGoogle Scholar
  40. 40.
    Clery RA, Hammond CJ, Wright AC. Nitrogen-containing compounds in black pepper oil (Piper nigrum L.). J Essent Oil Res. 2006;18(1):1–3.CrossRefGoogle Scholar
  41. 41.
    Boatright J, Negre F, Chen X, Kish CM, Wood B, Peel G, et al. Understanding in vivo benzenoid metabolism in petunia petal tissue. Plant Physiol. 2004;135(4):1993–2011.CrossRefGoogle Scholar
  42. 42.
    M E, W B, D S, J S. Biotechnological production of 2-phenylethanol. Appl Microbiol Biotechnol. 2002;59(1):1–8.CrossRefGoogle Scholar
  43. 43.
    Alissandrakis E, Daferera D, Tarantilis PA, Polissiou M, Harizanis PC. Ultrasound-assisted extraction of volatile compounds from citrus flowers and citrus honey. Food Chem. 2003;82(4):575–82.CrossRefGoogle Scholar
  44. 44.
    Xin H, Wu B, Zhang H, Wang C, Li J, Yang B, et al. Characterization of volatile compounds in flowers from four groups of sweet osmanthus (Osmanthus fragrans) cultivars. Can J Plant Sci. 2013;93(5):923–31.CrossRefGoogle Scholar
  45. 45.
    Chandasana H, Chhonker YS, Bala V, Prasad YD, Chaitanya TK, Sharma VL, et al. Pharmacokinetic, bioavailability, metabolism and plasma protein binding evaluation of NADPH-oxidase inhibitor apocynin using LC–MS/MS. J Chromatogr B. 2015;985:180–8.CrossRefGoogle Scholar
  46. 46.
    Ostrowski W, Wojakowska A, Grajzer M, Stobiecki M. Mass spectrometric behavior of phenolic acids standards and their analysis in the plant samples with LC/ESI/MS system. J Chromatogr B. 2014;967:21–7.CrossRefGoogle Scholar
  47. 47.
    Schwarz KJ, Stübner R, Methner F-J. Formation of styrene dependent on fermentation management during wheat beer production. Food Chem. 2012;134(4):2121–5.CrossRefGoogle Scholar
  48. 48.
    Howarth B, Edmunds M, Gilbert F. Does the abundance of hoverfly (Syrphidae) mimics depend on the numbers of their hymenopteran models? Evolution. 2004;58(2):367–75.CrossRefGoogle Scholar
  49. 49.
    Dötterl S, Vater M, Rupp T, Held A. Ozone differentially affects perception of plant volatiles in western honey bees. J Chem Ecol. 2016;42(6):486–9.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Xiaoping Zhang
    • 1
  • Yin Ji
    • 1
  • Yi Zhang
    • 1
  • Fen Liu
    • 1
  • Honghan Chen
    • 1
  • Jianchuan Liu
    • 1
  • Eric Storr Handberg
    • 1
  • Vitaliy V. Chagovets
    • 2
  • Konstantin Chingin
    • 1
    Email author
  1. 1.Jiangxi Key Laboratory for Mass Spectrometry and InstrumentationEast China University of TechnologyNanchangChina
  2. 2.National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I.Kulakov of Ministry of Healthcare of Russian FederationMoscowRussian Federation

Personalised recommendations