Analytical and Bioanalytical Chemistry

, Volume 411, Issue 4, pp 803–812 | Cite as

Solid-phase extraction coupled with switchable hydrophilicity solvent-based homogeneous liquid–liquid microextraction for chloramphenicol enrichment in environmental water samples: a novel alternative to classical extraction techniques

  • Xin Di
  • Xin Wang
  • Youping Liu
  • Xingjie GuoEmail author
  • Xin DiEmail author
Paper in Forefront


A simple and efficient method combining solid-phase extraction (SPE) with homogeneous liquid–liquid microextraction (HLLME) has been developed for fast pretreatment of chloramphenicol (CAP) from water samples prior to determination by high-performance liquid chromatography–ultraviolet detection. Oasis HLB sorbent was chosen for SPE. In HLLME, N,N-dimethylcyclohexylamine was used as a CO2-triggered switchable solvent that could switch reversibly between hydrophilic and hydrophobic forms. The parameters influencing both SPE and HLLME were investigated and optimized. Under the optimal conditions, the method exhibited low limit of detection (0.1 ng/mL), good linearity (0.5-50 ng/mL), acceptable precision (RSD <5.0%) and accuracy (RE <4.0%). An enrichment factor of 340 was obtained. The proposed method is simple, fast, cost-effective, and suitable for the determination of trace chloramphenicol in water matrices.

Graphical abstract


Solid-phase extraction Homogeneous liquid–liquid microextraction Switchable hydrophilicity solvent Chloramphenicol 



The authors would like to thank Liang Chen, Zhengsheng Mao, and Yanan Zang for their technical assistance during the experiments.

Compliance with ethical standards

Conflict of interest

The authors have declared that there are no conflicts of interest.

Supplementary material

216_2018_1486_MOESM1_ESM.pdf (119 kb)
ESM 1 (PDF 119 kb)


  1. 1.
    Balbi HJ. Chloramphenicol: a review. Pediatr Rev. 2004;25(8):284–8.CrossRefGoogle Scholar
  2. 2.
    Schwarz S, Kehrenberg C, Doublet B, Cloeckaert A. Molecular basis of bacterial resistance to chloramphenicol and florfenicol. FEMS Microbiol Rev. 2004;28(5):519–42.CrossRefGoogle Scholar
  3. 3.
    Gross BJ, Branchflower RV, Burke TR, Lees DE, Pohl LR. Bone marrow toxicity in vitro of chloramphenicol and its metabolites. Toxicol Appl Pharmacol. 1982;64(3):557–65.CrossRefGoogle Scholar
  4. 4.
    Chen H, Rao H, He P, Qiao Y, Wang F, Liu H, et al. Potential toxicity of amphenicol antibiotic: binding of chloramphenicol to human serum albumin. Environ Sci Pollut Res. 2014;21(19):3081–7.Google Scholar
  5. 5.
    Phillips CI. Risk of systemic toxicity from topical ophthalmic chloramphenicol. Scot Med J. 2008;53(3):54–5.CrossRefGoogle Scholar
  6. 6.
    European Commission, Commission Decision (EU) 181/2003, L 71/17 of 13 March2003, Amending Decision 2002/657/EC as regards the setting of minimum required performance limits (MRPLs) for certain residues in food animal origin (2003) 764, Off J Eur Union (2003)17-18.Google Scholar
  7. 7.
    Han J, Wang Y, Yu CL, Yan YS, Xie XQ. Extraction and determination of chloramphenicol in feed water, milk, and honey samples using an ionic liquid/sodium citrate aqueous two-phase system coupled with high-performance liquid chromatography. Anal Bioanal Chem. 2011;399(3):1295–304.CrossRefGoogle Scholar
  8. 8.
    Liu HY, Lin SL, Fuh MR. Determination of chloramphenicol, thiamphenicol and florfenicol in milk and honey using modified QuEChERS extraction coupled with polymeric monolith-based capillary liquid chromatography tandem mass spectrometry. Talanta. 2016;150:233–9.CrossRefGoogle Scholar
  9. 9.
    Kummerer K, Henninger A. Promoting resistance by the emission of antibiotics from hospitals and households into effluent. Clin Microbiol Infect. 2003;9(12):1203–14.CrossRefGoogle Scholar
  10. 10.
    Liu H, Zhang G, Liu CQ, Li L, Xiang M. The occurrence of chloramphenicol and tetracyclines in municipal sewage and the Nanming River, Guiyang City, China. J Environ Monit. 2009;11(6):1199–205.CrossRefGoogle Scholar
  11. 11.
    Lu XW, Dang Z, Yang C. Preliminary investigation of chloramphenicol in fish, water and sediment from freshwater aquaculture pond. Int J Environ Sci Technol. 2009;6(4):597–604.CrossRefGoogle Scholar
  12. 12.
    Han J, Wang Y, Yu C, Li C, Yan Y, Liu Y, et al. Separation, concentration and determination of chloramphenicol in environment and food using an ionic liquid/salt aqueous two-phase flotation system coupled with high-performance liquid chromatography. Anal Chim Acta. 2011;685(2):138–45.CrossRefGoogle Scholar
  13. 13.
    Liu S, Wu XZ, Gao ZH, Jiao F. On-site solid phase extraction and HPLC determination of chloramphenicol in surface water and sewage. Anal Methods. 2013;5(5):1150.CrossRefGoogle Scholar
  14. 14.
    Cai Q, Zhang L, Zhao P, Lun X, Li W, Guo Y, et al. A joint experimental-computational investigation: metal organic framework as a vortex assisted dispersive micro-solid-phase extraction sorbent coupled with UPLC–MS/MS for the simultaneous determination of amphenicols and their metabolite in aquaculture water. Microchem J. 2017;130:263–70.CrossRefGoogle Scholar
  15. 15.
    Aresta A, Bianchi D, Calvano CD, Zambonin CG. Solid phase microextraction-liquid chromatography (SPME-LC) determination of chloramphenicol in urine and environmental water samples. J Pharmaceut Biomed. 2010;53(3):440–4.CrossRefGoogle Scholar
  16. 16.
    Yao T, Yao S. Magnetic ionic liquid aqueous two-phase system coupled with high performance liquid chromatography: a rapid approach for determination of chloramphenicol in water environment. J Chromatogr A. 2017;1481:12–22.CrossRefGoogle Scholar
  17. 17.
    Guan J, Zhang C, Wang Y, Guo Y, Huang P, Zhao L. Simultaneous determination of 12 pharmaceuticals in water samples by ultrasound-assisted dispersive liquid-liquid microextraction coupled with ultra-high performance liquid chromatography with tandem mass spectrometry. Anal Bioanal Chem. 2016;408(28):8099–109.CrossRefGoogle Scholar
  18. 18.
    Liang N, Huang P, Hou X, Li Z, Tao L, Zhao L. Solid-phase extraction in combination with dispersive liquid-liquid microextraction and ultra-high performance liquid chromatography-tandem mass spectrometry analysis: the ultra-trace determination of 10 antibiotics in water samples. Anal Bioanal Chem. 2016;408(6):1701–13.CrossRefGoogle Scholar
  19. 19.
    Ma S, Ye X, Huang P, Zhao L, Liang N. Simultaneous determination of nitroimidazoles and amphenicol antibiotics in water samples using ultrasound-assisted dispersive liquid-liquid microextraction coupled with ultra-high-performance liquid chromatography with tandem mass spectrometry. Anal Methods. 2016;8(46):8219–26.CrossRefGoogle Scholar
  20. 20.
    Berijani S, Assadi Y, Anbia M, Milani Hosseini MR, Aghaee E. Dispersive liquid-liquid microextraction combined with gas chromatography-flame photometric detection very simple, rapid and sensitive method for the determination of organophosphorus pesticides in water. J Chromatogr A. 2006;1123(1):1–9.CrossRefGoogle Scholar
  21. 21.
    Rezaee M, Assadi Y, Hosseinia M, Aghaee E, Ahmadi F, Berijani S. Determination of organic compounds in water using dispersive liquid-liquid microextraction. J Chromatogr A. 2006;1116(1-2):1–9.CrossRefGoogle Scholar
  22. 22.
    Trujillo-Rodriguez MJ, Rocio-Bautista P, Pino V, Afonso AM. Ionic liquids in dispersive liquid-liquid microextraction. TrAC Trend Anal Chem. 2013;51:87–106.CrossRefGoogle Scholar
  23. 23.
    Phan L, Brown H, White J, Hodgson A, Jessop PG. Soybean oil extraction and separation using switchable or expanded solvents. Green Chem. 2009;11(1):53–9.CrossRefGoogle Scholar
  24. 24.
    Samori C, Torri C, Samori G, Fabbri D, Galletti P, Guerrini F, et al. Extraction of hydrocarbons from microalga Botryococcus braunii with switchable solvents. Bioresour Technol. 2010;101(9):3274–9.CrossRefGoogle Scholar
  25. 25.
    Lasarte-Aragones G, Lucena R, Cardenas S, Valcarcel M. Use of switchable solvents in the microextraction context. Talanta. 2015;131:645–9.CrossRefGoogle Scholar
  26. 26.
    Fu D, Farag S, Chaouki J, Jessop PG. Extraction of phenols from lignin microwave pyrolysis oil using a switchable hydrophilicity solvent. Bioresource Technol. 2014;154:101–8.CrossRefGoogle Scholar
  27. 27.
    Pochivalov A, Timofeeva I, Vakh C, Bulatov A. Switchable hydrophilicity solvent membrane-based microextraction: HPLC-FLD determination of fluoroquinolones in shrimps. Anal Chim Acta. 2017;976:35–44.CrossRefGoogle Scholar
  28. 28.
    Kakavandi NR, Ezoddin M, Abdi K, Ghazi-Khansari M, Amini M, Shahtaheri SJ. Ion-pair switchable-hydrophilicity solvent-based homogeneous liquid-liquid microextraction for the determination of paraquat in environmental and biological samples before high-performance liquid chromatography. J Sep Sci. 2017;40(18):3703–9.CrossRefGoogle Scholar
  29. 29.
    Ezoddin M, Abdi K, Lamei N. Development of air assisted liquid phase microextraction based on switchable-hydrophilicity solvent for the determination of palladium in environmental samples. Talanta. 2016;153:247–52.CrossRefGoogle Scholar
  30. 30.
    Jessop PG, Heldebrant DJ, Li XW, Eckert CA, Liotta CL. Green chemistry-reversible nonpolar-to-polar solvent. Nature. 2005;436(7054):1102.CrossRefGoogle Scholar
  31. 31.
    Jessop PG, Phan L, Carrier A, Robinson S, Duerr CJ. Harjani JR. A solvent having switchable hydrophilicity. Green Chem. 2010;12(5):809–14.CrossRefGoogle Scholar
  32. 32.
    Jessop PG, Kozycz L, Rahami ZG, Schoenmakers D, Boyd AR, Wechsler D, et al. Tertiary amine solvents having switchable hydrophilicity. Green Chem. 2011;13(3):619–23.CrossRefGoogle Scholar
  33. 33.
    Naeemullah SF, Kazi TG, Afridi HI, Khan AR, Arain SS, et al. Switchable dispersive liquid-liquid microextraction for lead enrichment: a green alternative to classical extraction techniques. Anal Methods. 2016;8(4):904–11.CrossRefGoogle Scholar
  34. 34.
    Phan L, Andreatta JR, Horvey LK, Edie CF, Luco AL, Mirchandani A, et al. Switchable-polarity solvents prepared with a single liquid component. J Org Chem. 2008;73(1):127–32.CrossRefGoogle Scholar
  35. 35.
    Wilson AD, Stewart FF. Structure-function study of tertiary amines as switchable polarity solvents. RSC Adv. 2014;4(22):11039–49.CrossRefGoogle Scholar
  36. 36.
    Guy PA, Royer D, Mottier P, Gremaud E, Perisset A, Stadler RH. Quantitative determination of chloramphenicol in milk powders by isotope dilution liquid chromatography coupled to tandem mass spectrometry. J Chromatogr A. 2004;1054(1-2):365–71.CrossRefGoogle Scholar
  37. 37.
    Durelle J, Vanderveen JR, Quan Y, Chalifoux CB, Kostin JE, Jessop PG. Extending the range of switchable-hydrophilicity solvents. Phys Chem Chem Phys. 2015;17(7):5308–13.CrossRefGoogle Scholar
  38. 38.
    Pollet P, Eckert CA, Liotta CL. Switchable solvents. Chem Sci. 2011;2(4):609–14.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of PharmacyShenyang Pharmaceutical UniversityShenyangChina

Personalised recommendations