Advertisement

l-Glutamine-assisted synthesis of ZnO oatmeal-like/silver composites as an electrochemical sensor for Pb2+ detection

  • Mohammad Reza Mahmoudian
  • Wan Jefrey Basirun
  • Pei Meng Woi
  • Ramin Yousefi
  • Yatimah Alias
Research Paper
  • 18 Downloads

Abstract

We report a green synthesis of oatmeal ZnO/silver composites in the presence of l-glutamine as an electrochemical sensor for Pb2+ detection. The synthesis was performed via the direct reduction of Ag+ in the presence of l-glutamine in NaOH. X-ray diffraction indicated that the Ag+ was completely reduced to metallic Ag. The field emission scanning electron microscopy (FESEM) and energy dispersive X-ray results confirmed an oatmeal-like morphology of the ZnO with the presence of Ag. The FESEM images showed the effect of l-glutamine on the ZnO morphology. The EIS results confirmed a significant decrease in the charge transfer resistance of the modified glassy carbon electrode due to the presence of Ag. From the differential pulse voltammetry results, a linear working range for the concentration of Pb2+ between 5 and 6 nM with LOD of 0.078 nM (S/N = 3) was obtained. The sensitivity of the linear segment is 1.42 μA nM−1 cm−2. The presence of l-glutamine as the capping agent and stabilizer decreases the size of Ag nanoparticles and prevents the agglomeration of ZnO, respectively.

Graphical abstract

Keywords

Silver nanoparticles l-Glutamine Lead sensor 

Notes

Acknowledgments

The authors wish to thank Mojdeh Yeganeh for valuable discussion.

Funding information

This research is supported by High Impact Research MoE Grant UM.C/625/1/HIR/MoE/SC/04 from the Ministry of Education Malaysia, PRGS grant PR002-2014A, FP039 2016, and University Malaya Centre for Ionic Liquids (UMCiL).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Durkalec M, Szkoda J, Kolacz R, Opalinski S, Nawrocka A, Zmudzki J. Bioaccumulation of lead, cadmium and mercury in roe deer and wild boars from areas with different levels of toxic metal pollution. Int J Environ Res. 2006;9(1):205–12.Google Scholar
  2. 2.
    Asher SA, Sharma AC, Goponenko AV, Ward MM. Photonic crystal aqueous metal cation sensing materials. Anal Chem. 2003;75(7):1676–83.CrossRefGoogle Scholar
  3. 3.
    Harrington CF, Clough R, Drennan-Harris LR, Hill SJ, Tyson JF. Atomic spectrometry update. Elemental speciation. J Anal At Spectrom. 2011;26(8):1561–95.CrossRefGoogle Scholar
  4. 4.
    Zhang Y, Adeloju SB. Coupling of non-selective adsorption with selective elution for novel in-line separation and detection of cadmium by vapour generation atomic absorption spectrometry. Talanta. 2015;137(1):148–55.CrossRefGoogle Scholar
  5. 5.
    Arunbabu D, Sannigrahi A, Jana T. Photonic crystal hydrogel material for the sensing of toxic mercury ions (Hg2+) in water. Soft Matter. 2011;7(6):2592–9.CrossRefGoogle Scholar
  6. 6.
    Hong W, Li W, Hu X, Zhao B, Zhang F, Zhang D. Highly sensitive colorimetric sensing for heavy metal ions by strong polyelectrolyte photonic hydrogels. J Mater Chem. 2011;21(43):17193–201.CrossRefGoogle Scholar
  7. 7.
    Cai Z, Zhang JT, Xue F, Hong Z, Punihaole D, Asher SA. 2D photonic crystal protein hydrogel coulometer for sensing serum albumin ligand binding. Anal Chem. 2014;86(10):4840–7.CrossRefGoogle Scholar
  8. 8.
    Hutton EA, van Elteren JT, Ogorevc B, Smyth MR. Validation of bismuth film electrode for determination of cobalt and cadmium in soil extracts using ICP–MS. Talanta. 2004;63(4):849–55.CrossRefGoogle Scholar
  9. 9.
    March G, Nguyen TD, Piro B. Modified electrodes used for electrochemical detection of metal ions in environmental analysis. Biosensors. 2015;5(2079–6374):241–75.CrossRefGoogle Scholar
  10. 10.
    Gumpu MB, Krishnan UM, Rayappan JBB. Design and development of amperometric biosensor for the detection of lead and mercury ions in water matrix-a permeability approach. Anal Bioanal Chem. 2017;409(17):4257–66.CrossRefGoogle Scholar
  11. 11.
    Bonil Y, Brand M, Kirowa-Eisner E. Determination of sub-μg·L−1 concentrations of copper by anodic stripping voltammetry at the gold electrode. Anal Chim Acta. 1999;387(1):85–95.CrossRefGoogle Scholar
  12. 12.
    Bonfil Y, Brand M, Kirowa-Eisner E. Characteristics of subtractive anodic stripping voltammetry of Pb and Cd at silver and gold electrodes. Anal Chim Acta. 2002;464(1):99–114.CrossRefGoogle Scholar
  13. 13.
    Brand M, Eshkenazi I, Kirowa-Eisner E. The silver electrode in square-wave anodic stripping voltammetry. Determination of Pb2+ without removal of oxygen. Anal Chem. 1997;69(22):4660–4.CrossRefGoogle Scholar
  14. 14.
    Kirowa-Eisner E, Brand M, Tzur D. Determination of sub-nanomolar concentrations of lead by anodic-stripping voltammetry at the silver electrode. Anal Chim Acta. 1999;385(1–3):325–35.CrossRefGoogle Scholar
  15. 15.
    Jianyun L, Guodong Z, Mengni C, Xiaoyu M, Jianmao Y. Fabrication of electrospun ZnO nanofiber-modified electrode for the determination of trace Cd(II). Sensors Actuators B Chem. 2016;234(1):84–91.Google Scholar
  16. 16.
    Makarov VV, Love AJ, Sinitsyna OV, Makarova SS, Yaminsky IV, Taliansky ME, et al. “Green” nanotechnologies: synthesis of metal nanoparticles using plants. Acta Nat. 2014;6(2):35–44.Google Scholar
  17. 17.
    Govindaraju K, Khaleel Basha S, Ganesh Kumar V. Silver, gold and bimetallic nanoparticles production using single-cell protein (Spirulina platensis) Geitler. J Mater Sci. 2008;43(15):5115–22.CrossRefGoogle Scholar
  18. 18.
    Lengke MF, Fleet ME, Southam G. Morphology of gold nanoparticles synthesized by filamentous cyanobacteria from gold(I)−thiosulfate and gold(III)−chloride complexes. Langmuir. 2006;22(6):2780–7.CrossRefGoogle Scholar
  19. 19.
    Kowshik M, Deshmukh N, Vogel W, Urban J, Kulkarni SK, Paknikar KM. Microbial synthesis of semiconductor CdS nanoparticles, their characterization, and their use in the fabrication of an ideal diode. Biotechnol Bioeng. 2002;78(5):583–8.CrossRefGoogle Scholar
  20. 20.
    Anshup A, Venkataraman JS, Subramaniam C, Kumar RR, Priya S, Kumar TR, et al. Growth of gold nanoparticles in human cells. Langmuir. 2005;21(25):11562–7.CrossRefGoogle Scholar
  21. 21.
    Gruen LC. Interaction of amino acids with silver (I) ions. Biochim Biophys Acta. 1975;386(1):270–4.CrossRefGoogle Scholar
  22. 22.
    Sherigara BS, Ishwarabhat K, Pinto I. Anodically generated manganese (III) acetate for the oxidation of α — amino acids in aqueous acetic acid: a kinetic study. Amino Acids. 1995;8(3):291–303.CrossRefGoogle Scholar
  23. 23.
    Pinto I, Sherigara BS, Udupa HVK. Electrolytically generated manganese(III) sulphate as a redox titrant: potentiometric determination of thiosemicarbazide, its metal complexes and thiosemicarbazones. Analyst. 1991;116(3):285–9.CrossRefGoogle Scholar
  24. 24.
    Mulder WH, Sluyters JH, Pajkossy T, Nyikos I. Tafel current at fractal electrodes: connection with admittance. J Electroanal Chem Interfacial Electrochem. 1990;285(1–2):103.CrossRefGoogle Scholar
  25. 25.
    Yang G, Qu X, Shen M, Wang C, Qu Q, Hu X. Electrochemical behavior of lead (II) at poly(phenol red) modified glassy carbon electrode, and its trace determination by differential pulse anodic stripping voltammetry. Microchim Acta. 2008;160(1):275–81.CrossRefGoogle Scholar
  26. 26.
    HoneychurchK C, Hart JP, Cowell DC, Arrigan DWM. Voltammetric studies of lead at calixarene modified screenprinted carbon electrodes and its trace determination in water by stripping voltammetry. Sensors Actuators B. 2001;77(3):642–52.CrossRefGoogle Scholar
  27. 27.
    Monterroso SCC, Carapuca HM, Duarte AC. Ionexchange and permselectivity properties of poly(sodium 4-styrenesulfonate) coatings on glassy carbon: application in the modification of mercury film electrodes for the direct voltammetric analysis of trace metals in estuarine waters. Talanta. 2005;65(3):644–53.CrossRefGoogle Scholar
  28. 28.
    Xiang C, Zou Y, Sun LX, Xu F. Direct electrochemistry and electrocatalysis of cytochrome c immobilized on gold nanoparticles–chitosan–carbon nanotubes modified electrode. Talanta. 2007;74(2):206–11.CrossRefGoogle Scholar
  29. 29.
    Krull I, Swartz M. Determining limits of detection and quantitation. LC–GC. 1998;16(2):922–4.Google Scholar
  30. 30.
    Hocevar SB, Svancara I, Ogorevc B, Vytras K. Antimony film electrode for electrochemical stripping analysis. Anal Chem. 2007;79(22):8639–43.CrossRefGoogle Scholar
  31. 31.
    Li M, Wu J, Cui L, Ju H. Selective and sensitive electrochemical determination of Pb2+ based on highly adsorptiveWOx–ethylenediamine nanowires. J Electroanal Chem. 2015;757(1):23–8.CrossRefGoogle Scholar
  32. 32.
    Mahmoudian MR, Alias Y, Basirun WJ, Woi PM, Sookhakian M, Jamali-Sheini F. Synthesis and characterization of Fe3O4 rose like and spherical/reduced graphene oxide nanosheet composites for lead (II) sensor. Electrochim Acta. 2015;169(1):126–33.CrossRefGoogle Scholar
  33. 33.
    Yang Y, You Y, Liu Y, Yang Z. A lead (II) sensor based on a glassy carbon electrode modified with Fe3O4 nanospheres and carbon nanotubes. Microchim Acta. 2013;180(5):379–85.CrossRefGoogle Scholar
  34. 34.
    Sukeri A, Jayaraman M. Detection of lead(II) using an glassy carbon electrode modified with Nafion, carbon nanotubes and benzo-18-crown-6. Microchim Acta. 2013;180(11):1065–71.Google Scholar
  35. 35.
    Kefala G, Economou A. Polymer-coated bismuth film electrodes for the determination of trace metals by sequential-injection analysis/anodic stripping voltammetry. Anal Chim Acta. 2006;576(2):283–9.CrossRefGoogle Scholar
  36. 36.
    Zheng H, Yan ZN, Dong HM, Ye BX. Simultaneous determination of lead and cadmium at a glassy carbon electrode modified with Langmuir–Blodgett film of p-tert-butylthiacalix[4]arene. Sensors Actuators B Chem. 2007;120(2):603–9.CrossRefGoogle Scholar
  37. 37.
    Dai P, Yang Z. Sensor for lead(II) ion based on a glassy carbon electrode modified with double-stranded DNA and ferric oxide nanoparticles. Microchim Acta. 2012;176(1):109–15.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of FarhangianTehranIran
  2. 2.Department of ChemistryUniversity of MalayaKuala LumpurMalaysia
  3. 3.Department of PhysicsMasjed-Soleiman Branch Islamic Azad University (IAU)Masjed SoleymanIran

Personalised recommendations