Analytical and Bioanalytical Chemistry

, Volume 411, Issue 2, pp 493–506 | Cite as

Multiresidue analytical method for the determination of 41 multiclass organic pollutants in mussel and fish tissues and biofluids by liquid chromatography coupled to tandem mass spectrometry

  • Leire MijangosEmail author
  • Haizea Ziarrusta
  • Itsaso Zabaleta
  • Aresatz Usobiaga
  • Maitane Olivares
  • Olatz Zuloaga
  • Nestor Etxebarria
  • Ailette Prieto
Research Paper


In this work, the full optimisation and validation procedure to analyse a wide set of emerging organic contaminants in biotissues (mussel and fish muscle, liver, gills and brain) and biofluids (fish plasma and bile) is described. The target families include artificial sweeteners, industrial products, hormones, pharmaceutical and personal care products, pesticides and phytoestrogens. Different clean-up strategies (hydrophilic–lipophilic-balanced (HLB) solid-phase extraction, Florisil solid-phase extraction and liquid–liquid extraction followed by HLB solid-phase extraction and microextraction based on polyethersulfone polymer) were evaluated for the clean-up of focused ultrasonic solid–liquid extraction (FUSLE) extracts before the analysis by liquid chromatography–triple quadrupole tandem mass spectrometry (LC-QqQ-MS/MS). The methods afforded satisfactory apparent recovery values (71–126%) using isotopically labelled analytes and matrix-matched calibration approach, regardless of the matrix. Method detection limits in the range of 4–48 ng/g and 0.3–111 ng/L were obtained for biotissues and biofluids, respectively. The developed method was applied to determine the uptake and tissue distribution in juvenile gilt-head bream (Sparus aurata) during 7 days in seawater, and unexpectedly, perfluoro-1-butanesulfonate tended to accumulate in liver and, to a lesser extent, in muscle and gills. Furthermore, real mussel samples collected in the Basque coast were also analysed and the presence of the highly consumed valsartan (7 ng/g) and telmisartan (6.8 ng/g) compounds in bivalves is reported for the first time here.

Graphical abstract


Emerging compounds Multiclass method Fish tissues and biofluids Mussel Liquid chromatography tandem mass spectrometry Uptake and fish distribution 


Funding information

The authors gratefully acknowledge the financial support from the Agencia Estatal de Investigación (AEI) of Spain and the European Regional Development Fund (ERDF) through project CTM2014-56628-C3-1-R and from the Basque Government through project IT-742-13. L. Mijangos and H. Ziarrusta are grateful to the Basque Government and to the Spanish Ministry, respectively, for their pre-doctoral fellowships. I. Zabaleta is grateful to the University of the Basque Country (EHU-UPV) for her Dokberri post-doctoral fellowships.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

216_2018_1474_MOESM1_ESM.pdf (111 kb)
ESM 1 (PDF 110 kb)


  1. 1.
    Sousa JCG, Ribeiro AR, Barbosa MO, Pereira MFR, Silva AMT. A review on environmental monitoring of water organic pollutants identified by EU guidelines. J Hazard Mater. 2018;344:146–62.CrossRefGoogle Scholar
  2. 2.
    Ternes T, Joss A, Oehlmann J. Occurrence, fate, removal and assessment of emerging contaminants in water in the water cycle (from wastewater to drinking water). Water Res. 2015;72:1–2.CrossRefGoogle Scholar
  3. 3.
    Davis JM, Ekman DR, Teng Q, Ankley GT, Berninger JP, Cavallin JE, et al. Linking field-based metabolomics and chemical analyses to prioritize contaminants of emerging concern in the Great Lakes Basin. Environ Toxicol Chem. 2016;35:2493–502.CrossRefGoogle Scholar
  4. 4.
    Miller TH, Bury NR, Owen SF, MacRae JI, Barron LP. A review of the pharmaceutical exposome in aquatic fauna. Environ Pollut. 2018;239:129–46.CrossRefGoogle Scholar
  5. 5.
    Schymanski EL, Singer HP, Slobodnik J, Ipolyi IM, Oswald P, Krauss M, et al. Non-target screening with high-resolution mass spectrometry: critical review using a collaborative trial on water analysis. Anal Bioanal Chem. 2015;407:6237–55.CrossRefGoogle Scholar
  6. 6.
    Núñez M, Borrull F, Pocurull E, Fontanals N. Sample treatment for the determination of emerging organic contaminants in aquatic organisms. TrAC Trends Anal Chem. 2017;97:136–45.CrossRefGoogle Scholar
  7. 7.
    Huerta B, Jakimska A, Gros M, Rodríguez-Mozaz S, Barceló D. Analysis of multi-class pharmaceuticals in fish tissues by ultra-high-performance liquid chromatography tandem mass spectrometry. J Chromatogr A. 2013;1288:63–72.CrossRefGoogle Scholar
  8. 8.
    Tanoue R, Nomiyama K, Nakamura H, Hayashi T, Kim J-W, Isobe T, et al. Simultaneous determination of polar pharmaceuticals and personal care products in biological organs and tissues. J Chromatogr A. 2014;1355:193–205.CrossRefGoogle Scholar
  9. 9.
    Ros O, Vallejo A, Blanco-Zubiaguirre L, Olivares M, Delgado A, Etxebarria N, et al. Microextraction with polyethersulfone for bisphenol-A, alkylphenols and hormones determination in water samples by means of gas chromatography–mass spectrometry and liquid chromatography–tandem mass spectrometry analysis. Talanta. 2015;134:247–55.CrossRefGoogle Scholar
  10. 10.
    Navarro P, Bustamante J, Vallejo A, Prieto A, Usobiaga A, Arrasate S, et al. Determination of alkylphenols and 17β-estradiol in fish homogenate. Extraction and clean-up strategies. J Chromatogr A. 2010;1217:5890–5.CrossRefGoogle Scholar
  11. 11.
    Al-Ansari AM, Saleem A, Kimpe LE, Trudeau VL, Blais JM. The development of an optimized sample preparation for trace level detection of 17α-ethinylestradiol and estrone in whole fish tissue. J Chromatogr B. 2011;879:3649–52.CrossRefGoogle Scholar
  12. 12.
    Ziarrusta H, Val N, Dominguez H, Mijangos L, Prieto A, Usobiaga A, et al. Determination of fluoroquinolones in fish tissues, biological fluids, and environmental waters by liquid chromatography tandem mass spectrometry. Anal Bioanal Chem. 2017;409:6359–70.CrossRefGoogle Scholar
  13. 13.
    Ros O, Vallejo A, Olivares M, Etxebarria N, Prieto A. Determination of endocrine disrupting compounds in fish liver, brain, and muscle using focused ultrasound solid–liquid extraction and dispersive solid phase extraction as clean-up strategy. Anal Bioanal Chem. 2016;408:5689–700.CrossRefGoogle Scholar
  14. 14.
    Mijangos L, Ziarrusta H, Olivares M, Zuloaga O, Möder M, Etxebarria N, et al. Simultaneous determination of 41 multiclass organic pollutants in environmental waters by means of polyethersulfone microextraction followed by liquid chromatography–tandem mass spectrometry. Anal Bioanal Chem. 2018;410:615–32.CrossRefGoogle Scholar
  15. 15.
    Ziarrusta H, Mijangos L, Izagirre U, Plassmann MM, Benskin JP, Anakabe E, et al. Bioconcentration and biotransformation of amitriptyline in gilt-head bream. Environ Sci Technol. 2017;51:2464–71.CrossRefGoogle Scholar
  16. 16.
    Gros M, Rodríguez-Mozaz S, Barceló D. Rapid analysis of multiclass antibiotic residues and some of their metabolites in hospital, urban wastewater and river water by ultra-high-performance liquid chromatography coupled to quadrupole-linear ion trap tandem mass spectrometry. J Chromatogr A. 2013;1292:173–88.CrossRefGoogle Scholar
  17. 17.
    Griebenow K, Klibanov AM. On protein denaturation in aqueous–organic mixtures but not in pure organic solvents. J Am Chem Soc. 1996;118:11695–700.CrossRefGoogle Scholar
  18. 18.
    Ziarrusta H, Mijangos L, Prieto A, Etxebarria N, Zuloaga O, Olivares M. Determination of tricyclic antidepressants in biota tissue and environmental waters by liquid chromatography-tandem mass spectrometry. Anal Bioanal Chem. 2016;408:1205–16.CrossRefGoogle Scholar
  19. 19.
    Martínez Bueno MJ, Boillot C, Fenet H, Chiron S, Casellas C, Gómez E. Fast and easy extraction combined with high resolution-mass spectrometry for residue analysis of two anticonvulsants and their transformation products in marine mussels. J Chromatogr A. 2013;1305:27–34.CrossRefGoogle Scholar
  20. 20.
    Tang Q, Yang T, Tan X, Luo J. Simultaneous determination of fluoroquinolone antibiotic residues in milk sample by solid-phase extraction-liquid chromatography-tandem mass spectrometry. J Agric Food Chem. 2009;57:4535–9.CrossRefGoogle Scholar
  21. 21.
    López-Alonso JP, Bruix M, Font J, Ribó M, Vilanova M, Jiménez MA, et al. NMR spectroscopy reveals that RNase A is chiefly denatured in 40% acetic acid: implications for oligomer formation by 3D domain swapping. J Am Chem Soc. 2010;132:1621–30.CrossRefGoogle Scholar
  22. 22.
    Alvarez-Muñoz D, Huerta B, Fernandez-Tejedor M, Rodríguez-Mozaz S, Barceló D. Multi-residue method for the analysis of pharmaceuticals and some of their metabolites in bivalves. Talanta. 2015;136:174–82.CrossRefGoogle Scholar
  23. 23.
    Turnipseed SB, Storey JM, Lohne JJ, Andersen WC, Burger R, Johnson AS, et al. Wide-scope screening method for multiclass veterinary drug residues in fish, shrimp, and eel using liquid chromatography–quadrupole high-resolution mass spectrometry. J Agric Food Chem. 2017;65:7252–67.CrossRefGoogle Scholar
  24. 24.
    Grabicova K, Vojs Staňová A, Koba Ucun O, Borik A, Randak T, Grabic R. Development of a robust extraction procedure for the HPLC-ESI-HRPS determination of multi-residual pharmaceuticals in biota samples. Anal Chim Acta. 2018;1022:53–60.CrossRefGoogle Scholar
  25. 25.
    Lozowicka B, Ilyasova G, Kaczynski P, Jankowska M, Rutkowska E, Hrynko I, et al. Multi-residue methods for the determination of over four hundred pesticides in solid and liquid high sucrose content matrices by tandem mass spectrometry coupled with gas and liquid chromatograph. Talanta. 2016;151:51–61.CrossRefGoogle Scholar
  26. 26.
    Wille K, Kiebooms JAL, Claessens M, Rappé K, Bussche JV, Noppe H, et al. Development of analytical strategies using U-HPLC-MS/MS and LC-ToF-MS for the quantification of micropollutants in marine organisms. Anal Bioanal Chem. 2011;400:1459–72.CrossRefGoogle Scholar
  27. 27.
    Armitage JM, Erickson RJ, Luckenbach T, Ng CA, Prosser RS, Arnot JA, et al. Assessing the bioaccumulation potential of ionizable organic compounds: current knowledge and research priorities. Environ Toxicol Chem. 2016;36:882–97.CrossRefGoogle Scholar
  28. 28.
    Bayen S, Estrada ES, Juhel G, Kit LW, Kelly BC. Pharmaceutically active compounds and endocrine disrupting chemicals in water, sediments and mollusks in mangrove ecosystems from Singapore. Mar Pollut Bull. 2016;109:716–22.CrossRefGoogle Scholar
  29. 29.
    Dodder NG, Maruya KA, Lee Ferguson P, Grace R, Klosterhaus S, La Guardia MJ, et al. Occurrence of contaminants of emerging concern in mussels (Mytilus spp.) along the California coast and the influence of land use, storm water discharge, and treated wastewater effluent. Mar Pollut Bull. 2014;81:340–6.CrossRefGoogle Scholar
  30. 30.
    Li W, Shi Y, Gao L, Liu J, Cai Y. Investigation of antibiotics in mollusks from coastal waters in the Bohai Sea of China. Environ Pollut. 2012;162:56–62.CrossRefGoogle Scholar
  31. 31.
    Serra-Compte A, Álvarez-Muñoz D, Rodríguez-Mozaz S, Barceló D. Multi-residue method for the determination of antibiotics and some of their metabolites in seafood. Food Chem Toxicol. 2017;104:3–13.CrossRefGoogle Scholar
  32. 32.
    de Solla SR, Gilroy ÈAM, Klinck JS, King LE, McInnis R, Struger J, et al. Bioaccumulation of pharmaceuticals and personal care products in the unionid mussel Lasmigona costata in a river receiving wastewater effluent. Chemosphere. 2016;146:486–96.CrossRefGoogle Scholar
  33. 33.
    Klosterhaus SL, Grace R, Hamilton MC, Yee D. Method validation and reconnaissance of pharmaceuticals, personal care products, and alkylphenols in surface waters, sediments, and mussels in an urban estuary. Environ Int. 2013;54:92–9.CrossRefGoogle Scholar
  34. 34.
    Zabaleta I, Bizkarguenaga E, Prieto A, Ortiz-Zarragoitia M, Fernández LA, Zuloaga O. Simultaneous determination of perfluorinated compounds and their potential precursors in mussel tissue and fish muscle tissue and liver samples by liquid chromatography–electrospray-tandem mass spectrometry. J Chromatogr A. 2015;1387:13–23.CrossRefGoogle Scholar
  35. 35.
    Cunha I, Hoff P, Van K de V, Guilhermino L, Esmans E, De WC. Baseline study of perfluorooctane sulfonate occurrence in mussels, Mytilus galloprovincialis, from north-central Portuguese estuaries. Mar Pollut Bull. 2005;50:1128–32.CrossRefGoogle Scholar
  36. 36.
    Álvarez-Muñoz D, Rodríguez-Mozaz S, Maulvault AL, Tediosi A, Fernández-Tejedor M, Van den Heuvel F, et al. Occurrence of pharmaceuticals and endocrine disrupting compounds in macroalgaes, bivalves, and fish from coastal areas in Europe. Environ Res. 2015;143:56–64.CrossRefGoogle Scholar
  37. 37.
    Dévier M-H, Labadie P, Togola A, Budzinski H. Simple methodology coupling microwave-assisted extraction to SPE/GC/MS for the analysis of natural steroids in biological tissues: application to the monitoring of endogenous steroids in marine mussels Mytilus sp. Anal Chim Acta. 2010;657:28–35.CrossRefGoogle Scholar
  38. 38.
    Godoy AA, Kummrow F, Pamplin PAZ. Occurrence, ecotoxicological effects and risk assessment of antihypertensive pharmaceutical residues in the aquatic environment—a review. Chemosphere. 2015;138:281–91.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Leire Mijangos
    • 1
    • 2
    Email author
  • Haizea Ziarrusta
    • 1
    • 2
  • Itsaso Zabaleta
    • 1
  • Aresatz Usobiaga
    • 1
    • 2
  • Maitane Olivares
    • 1
    • 2
  • Olatz Zuloaga
    • 1
    • 2
  • Nestor Etxebarria
    • 1
    • 2
  • Ailette Prieto
    • 1
    • 2
  1. 1.Department of Analytical Chemistry, Faculty of Science and TechnologyUniversity of the Basque Country (UPV/EHU)BilbaoSpain
  2. 2.Research Centre for Experimental Marine Biology and Biotechnology (PIE)University of the Basque Country (UPV/EHU)PlentziaSpain

Personalised recommendations