Characterization of air contaminants emitted during laser cutting of carbon fiber-reinforced composite materials

  • Aleksey Noskov
  • Yngvar Thomassen
  • Balazs Berlinger
  • Raymond Olsen
  • Torunn K. Ervik
  • Stephan Weinbruch
  • Albert Gilmutdinov
Paper in Forefront


The emission of ultrafine carbonaceous particles during the laser cutting of fiber-reinforced polymer (CFRP) composite materials was investigated. The study was based on characterization of air contaminants emitted during laser cutting of an epoxy-based CFRP material with respect to particle size distribution, particle morphology, and chemical composition. Results indicate that about 90% of the total particulate mass is present as fine particulate matter with an aerodynamic cut-off diameter of 0.25 μm, and considerable amounts of ultrafine carbonaceous particulate matter dominated by organic carbon are emitted during high-power laser cutting of CFRP.


Nanoparticles/nanotechnology Aerosols/particulates Laser cutting Carbon fiber-reinforced polymer composite materials 


Funding information

The work was financially supported by the Ministry of Education and Science of the Russian Federation (research grants № 14.Z50.31.0023 and 9.3236.2017/4.6) and Federal Target Program 1.3 (agreement № 14.578.21.0245).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Prashanth S, Subbaya KM, Nithin K, Sachhidananda S. Fiber reinforced composites - a review. J Material Sci Eng. 2017;6(3):1000341.Google Scholar
  2. 2.
    OSHA technical manual. Section III. Chapter 1:Polymer matrix materials: advanced composites. (
  3. 3.
    Patel P, Gohil P, Rajpurohit S. Laser machining of polymer matrix composites: scope, limitation and application. IJETT. 2013;4(6):2391–9.Google Scholar
  4. 4.
    Haferkamp H, Alvensleben F, Seebaum D, Goede M, Puester T. Air contaminants generated during laser processing of organic materials and protective measures. J Laser Appl. 1998;10(3):109–13.CrossRefGoogle Scholar
  5. 5.
    Walter J, Hustedt M, Staehr R, Kaierle S, Jaeschke P, Suttmann O, et al. Laser cutting of carbon fiber reinforced plastics-investigation of hazardous process emissions. Phys Procedia. 2014;56:1153–64.CrossRefGoogle Scholar
  6. 6.
    Walter J, Brodesser A, Hustedt M, Bluemel S, Jaeschke P, Kaierle S. Laser processing of carbon fiber reinforced plastics-release of carbon fiber segments during short-pulsed laser processing of CFRP. Phys Procedia. 2016;83:1021–30.CrossRefGoogle Scholar
  7. 7.
    Mucha P, Weber R, Speker N, Berger P, Sommer B, Graf T. Calibrated heat flow model for determining the heat conduction losses in laser cutting of CFRP. Phys Procedia. 2014;56:1208–17.CrossRefGoogle Scholar
  8. 8.
    Beyler CL, Hirschler MM, Chapter 7: Thermal decomposition of polymers. SFPE handbook of fire protection engineering 3rdEdn. Ed. P.J. DiNenno. National Fire Protection Association. Quincy. MA. USA. 2001:1–100.Google Scholar
  9. 9.
    Li ZL, Chu PL, Zheng HY, Lim GC, Li L, Marimuthu S, et al. Laser machining of carbon fibre-reinforced plastic composites advances in laser materials processing: Woodhead Publishing; 2010. p. 136–77.Google Scholar
  10. 10.
    Solvay SA, Brussels. Belgium. Safety data sheet no.0042443.Google Scholar
  11. 11.
    Misra C, Singh M, Shen S, Sioutas C, Hall PM. Development and evaluation of a personal cascade impactor sampler (PCIP). Aerosol Sci. 2002;33:1027–47.CrossRefGoogle Scholar
  12. 12.
    Miller A, Frey G, King G, Sunderman C. A handheld electrostatic precipitator for sampling airborne particles and nanoparticles. Aerosol Sci Technol. 2010;44:417–27.CrossRefGoogle Scholar
  13. 13.
    National Institute of Occupational Safety and Health Method 5040: diesel particulate matter. Cincinnati. USA. 2003.Google Scholar
  14. 14.
    Krestinin AV. Detailed modeling of soot formation in hydrocarbon pyrolysis. Combust Flames. 2000;121:513–24.CrossRefGoogle Scholar
  15. 15.
    Wentzel M, Gorzawski H, Naumann KH, Saathoff H, Weinbruch S. Transmission electron microscopical and aerosol dynamical characterization of soot aerosols. J Aerosol Sci. 2003;34:1347–70.CrossRefGoogle Scholar
  16. 16.
    Weinbruch S, Benker N, Kandler K, Ebert M, Ellingsen DG, Berlinger B, et al. Morphology chemical composition and nanostructure of single carbon-rich particles studied by transmission electron microscopy: source apportionment in workroom air of aluminium smelters. Anal Bioanal Chem. 2016;408:1151–8.CrossRefGoogle Scholar
  17. 17.
    Current Intelligence Bulletin 65: occupational exposure to carbon nanotubes and nanofibers. National Institute of Occupational Safety and Health. USA. 2013. (http://www.cdcgov/niosh).
  18. 18.
    Beyler C, Hirschler H. SFPE handbook of fire protection engineering. Quiney. MAEdition edn 2002;7:110–131.Google Scholar
  19. 19.
    Luda MP, Balabanovich AI, Camino G. Thermal decomposition of fire retardant brominated epoxy resins. J Anal Appl Pyrolysis. 2002;65:25–40.CrossRefGoogle Scholar
  20. 20.
    Tranchard P, Duquesne S, Samyn F, Estèbe B, Bourbigot S. Kinetic analysis of thermal decomposition of a carbon fibre-reinforced epoxy resin laminate. J Anal Appl Pyrolysis. 2017;126:14–21.CrossRefGoogle Scholar
  21. 21.
    Xiong X, Zhou L, Ren R, Liu S, Chen P. The thermal decomposition behavior and kinetics of epoxy resins cured with a novel phthalide-containing aromatic diamine. Polym Test. 2018;68:46–52.CrossRefGoogle Scholar
  22. 22.
    Trasser FJ, Emmrich M, Kock H, Levsen K, Priess B, Sollinger S. Organic emissions during laser cutting of fibre-reinforced plastics. Staub Reinhaltung der Luft. 1991;51(10):365–72.Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Kazan National Research Technical UniversityKazanRussia
  2. 2.National Institute of Occupational HealthOsloNorway
  3. 3.Institute of Applied GeosciencesTechnical University DarmstadtDarmstadtGermany

Personalised recommendations