Advertisement

Analytical and Bioanalytical Chemistry

, Volume 411, Issue 2, pp 479–491 | Cite as

Quantitative analysis of chemoresistance-inducing fatty acid in food supplements using UHPLC–ESI-MS/MS

  • Jörg Schlotterbeck
  • Malgorzata Cebo
  • Agnes Kolb
  • Michael LämmerhoferEmail author
Research Paper

Abstract

Polyunsaturated fatty acids are important signaling molecules. A recent study reported hexadeca-4Z,7Z,10Z,13Z-tetraenoic acid, 12-oxo-5Z,8E,10E-heptadecatrienoic acid, and (12S)-hydroxy-5Z,8E,10E-heptadecatrienoic acid as chemotherapy resistance-inducing factors when tumor cells were treated with cisplatin. Marine-based food supplements like fish oil or algae extracts are rich in polyunsaturated fatty acids and can contain large amounts of hexadeca-4Z,7Z,10Z,13Z-tetraenoic acid. Thus, it was concluded that oral uptake of hexadeca-4Z,7Z,10Z,13Z-tetraenoic acid might induce chemoresistance as shown in a mouse model. Cancer patients tend to consume food supplements containing polyunsaturated fatty acids on a regular basis. The uptake of hexadeca-4Z,7Z,10Z,13Z-tetraenoic acid and (12S)-hydroxy-5Z,8E,10E-heptadecatrienoic acid should be controlled, because even low concentrations of 0.5 ng mL-1 showed chemoresistance-inducing effects in animal experiments. For accurate analysis of hexadeca-4Z,7Z,10Z,13Z-tetraenoic acid and (12S)-hydroxy-5Z,8E,10E-heptadecatrienoic acid a validated method was developed by using ultrahigh-performance liquid chromatography hyphenated to quadrupole time of flight mass spectrometry via electrospray ionization and sample preparation by solid-phase extraction (SPE) with 3-aminopropyl silica. A combined targeted/untargeted approach was utilized using MS/MS by data-independent acquisition with SWATH and applied to commercial food supplements (refined fish oil, fish oil capsules, algae oil capsules, and flaxseed capsules). Accurate quantification of hexadeca-4Z,7Z,10Z,13Z-tetraenoic acid and (12S)-hydroxy-5Z,8E,10E-heptadecatrienoic acid on the MS/MS level with simultaneous untargeted fatty acid screening revealed additional information. The LODs for hexadeca-4Z,7Z,10Z,13Z-tetraenoic acid and (12S)-hydroxy-5Z,8E,10E-heptadecatrienoic acid were 0.036 ng mL-1 and 0.054 ng mL-1, respectively. Since hexadeca-4Z,7Z,10Z,13Z-tetraenoic acid was present in the samples in large amounts and (12S)-hydroxy-5Z,8E,10E-heptadecatrienoic was not expected to be present in high concentrations, two calibration ranges, namely, 0.5–20 ng mL-1 and 5–200 ng mL-1, were validated. An untargeted screening identified 18–39 free fatty acids being present in the lipid extracts of the food supplement samples.

Graphical abstract

Keywords

Platinum-induced fatty acids Chemotherapy resistance-inducing fatty acid Fish oil Data-independent acquisition SWATH 

Notes

Acknowledgements

We acknowledge the financial support by the “Struktur- und Innovationsfonds Baden-Württemberg (SI-BW)”, the German Science Foundation (DFG no. INST 37/821-1 FUGG).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

216_2018_1468_MOESM1_ESM.pdf (159 kb)
ESM 1 (PDF 158 kb)

References

  1. 1.
    Roodhart JM, Daenen LG, Stigter EC, Prins HJ, Gerrits J, Houthuijzen JM, Gerritsen MG, Schipper HS, Backer MJ, van Amersfoort M, Vermaat JS, Moerer P, Ishihara K, Kalkhoven E, Beijnen JH, Derksen PW, Medema RH, Martens AC, Brenkman AB, Voest EE. Mesenchymal stem cells induce resistance to chemotherapy through the release of platinum-induced fatty acids. Cancer Cell. 2011;20(3):370-383.  https://doi.org/10.1016/j.ccr.2011.08.010.
  2. 2.
    Houthuijzen JM, Daenen LG, Roodhart JM, Oosterom I, van Jaarsveld MT, Govaert KM, Smith ME, Sadatmand SJ, Rosing H, Kruse F, Helms BJ, van Rooijen N, Beijnen JH, Haribabu B, van de Lest CH, Voest EE. Lysophospholipids secreted by splenic macrophages induce chemotherapy resistance via interference with the DNA damage response. Nat Commun. 2014;5:5275.  https://doi.org/10.1038/ncomms6275.
  3. 3.
    Houthuijzen JM, Oosterom I, Hudson BD, Hirasawa A, Daenen LGM, McLean CM, et al. Fatty acid 16:4(n-3) stimulates a GPR120-induced signaling cascade in splenic macrophages to promote chemotherapy resistance. FASEB J. 2017;31(5):2195–209.  https://doi.org/10.1096/fj.201601248R.
  4. 4.
    Ishihara K, Murata M, Kaneniwa M, Saito H, Komatsu W, Shinohara K. Purification of stearidonic acid (18:4(n-3)) and hexadecatetraenoic acid (16:4(n-3)) from algal fatty acid with lipase and medium pressure liquid chromatography. Biosci Biotechnol Biochem. 2000;64(11):2454–7.CrossRefGoogle Scholar
  5. 5.
    Daenen LG, Cirkel GA, Houthuijzen JM, Gerrits J, Oosterom I, Roodhart JM, et al. Increased plasma levels of chemoresistance-inducing fatty acid 16:4(n-3) after consumption of fish and fish oil. JAMA Oncol. 2015;1(3):350–8.  https://doi.org/10.1001/jamaoncol.2015.0388.
  6. 6.
    Fats and fatty acids in human nutrition. Report of an expert consultation. FAO Food Nutr Pap. 2010;91:1–166.Google Scholar
  7. 7.
    Gupta D, Lis CG, Birdsall TC, Grutsch JF. The use of dietary supplements in a community hospital comprehensive cancer center: implications for conventional cancer care. Support Care Cancer. 2005;13(11):912–9.  https://doi.org/10.1007/s00520-005-0820-9.CrossRefGoogle Scholar
  8. 8.
    van der Meij BS, Langius JA, Smit EF, Spreeuwenberg MD, von Blomberg BM, Heijboer AC, Paul MA, van Leeuwen PA. Oral nutritional supplements containing (n-3) polyunsaturated fatty acids affect the nutritional status of patients with stage III non-small cell lung cancer during multimodality treatment. J Nutr. 2010;140(10):1774-1780.  https://doi.org/10.3945/jn.110.121202.
  9. 9.
    Leng J, Guan Q, Sun T, Wang H, Cui J, Liu Q, et al. Direct infusion electrospray ionization-ion mobility-mass spectrometry for comparative profiling of fatty acids based on stable isotope labeling. Anal Chim Acta. 2015;887:148–54.  https://doi.org/10.1016/j.aca.2015.06.029.
  10. 10.
    Ibanez C, Simo C, Palazoglu M, Cifuentes A. GC-MS based metabolomics of colon cancer cells using different extraction solvents. Anal Chim Acta. 2017;986:48–56.  https://doi.org/10.1016/j.aca.2017.07.019.CrossRefGoogle Scholar
  11. 11.
    Yin S, Guo P, Hai D, Xu L, Shu J, Zhang W, et al. Optimization of GC/TOF MS analysis conditions for assessing host-gut microbiota metabolic interactions: Chinese rhubarb alters fecal aromatic amino acids and phenol metabolism. Anal Chim Acta. 2017;995:21–33.  https://doi.org/10.1016/j.aca.2017.09.042.
  12. 12.
    Fiehn O. Metabolomics by gas chromatography–mass spectrometry: combined targeted and untargeted profiling. Curr Protoc Mol Biol. 2016;114:30.4.1–2.  https://doi.org/10.1002/0471142727.mb3004s114.CrossRefGoogle Scholar
  13. 13.
    Dupuy A, Le Faouder P, Vigor C, Oger C, Galano JM, Dray C, et al. Bertrand-Michel J. Simultaneous quantitative profiling of 20 isoprostanoids from omega-3 and omega-6 polyunsaturated fatty acids by LC-MS/MS in various biological samples. Anal Chim Acta. 2016;921:46–58.  https://doi.org/10.1016/j.aca.2016.03.024.
  14. 14.
    Bian X, Sun B, Zheng P, Li N, Wu JL. Derivatization enhanced separation and sensitivity of long chain-free fatty acids: application to asthma using targeted and non-targeted liquid chromatography-mass spectrometry approach. Anal Chim Acta. 2017;989:59–70.  https://doi.org/10.1016/j.aca.2017.08.009.CrossRefGoogle Scholar
  15. 15.
    Hu T, Tie C, Wang Z, Zhang JL. Highly sensitive and specific derivatization strategy to profile and quantitate eicosanoids by UPLC-MS/MS. Anal Chim Acta. 2017;950:108–18.  https://doi.org/10.1016/j.aca.2016.10.046.CrossRefGoogle Scholar
  16. 16.
    Rund KM, Ostermann AI, Kutzner L, Galano J-M, Oger C, Vigor C, et al. Development of an LC-ESI(-)-MS/MS method for the simultaneous quantification of 35 isoprostanes and isofurans derived from the major n3- and n6-PUFAs. Anal Chim Acta. 2018;1037:63–74.  https://doi.org/10.1016/j.aca.2017.11.002.
  17. 17.
    Wang Z, Bian L, Mo C, Kukula M, Schug KA, Brotto M. Targeted quantification of lipid mediators in skeletal muscles using restricted access media-based trap-and-elute liquid chromatography-mass spectrometry. Anal Chim Acta. 2017;984:151–61.  https://doi.org/10.1016/j.aca.2017.07.024.CrossRefGoogle Scholar
  18. 18.
    Narvaez-Rivas M, Vu N, Chen GY, Zhang Q. Off-line mixed-mode liquid chromatography coupled with reversed phase high performance liquid chromatography-high resolution mass spectrometry to improve coverage in lipidomics analysis. Anal Chim Acta. 2017;954:140–50.  https://doi.org/10.1016/j.aca.2016.12.003.CrossRefGoogle Scholar
  19. 19.
    Wang S, Zhou L, Wang Z, Shi X, Xu G. Simultaneous metabolomics and lipidomics analysis based on novel heart-cutting two-dimensional liquid chromatography-mass spectrometry. Anal Chim Acta. 2017;966:34–40.  https://doi.org/10.1016/j.aca.2017.03.004.CrossRefGoogle Scholar
  20. 20.
    Yang L, Lv P, Ai W, Li L, Shen S, Nie H, et al. Lipidomic analysis of plasma in patients with lacunar infarction using normal-phase/reversed-phase two-dimensional liquid chromatography-quadrupole time-of-flight mass spectrometry. Anal Bioanal Chem. 2017;409(12):3211–22.  https://doi.org/10.1007/s00216-017-0261-6.
  21. 21.
    Donato P, Micalizzi G, Oteri M, Rigano F, Sciarrone D, Dugo P, et al. Comprehensive lipid profiling in the Mediterranean mussel (Mytilus galloprovincialis) using hyphenated and multidimensional chromatography techniques coupled to mass spectrometry detection. Anal Bioanal Chem. 2018;410(14):3297–313.  https://doi.org/10.1007/s00216-018-1045-3.
  22. 22.
    Cajka T, Fiehn O. Toward merging untargeted and targeted methods in mass spectrometry-based metabolomics and lipidomics. Anal Chem. 2016;88(1):524–45.  https://doi.org/10.1021/acs.analchem.5b04491.CrossRefGoogle Scholar
  23. 23.
    Stigter EC, Letsiou S, vd Broek NJ, Gerrits J, Ishihara K, Voest EE, et al. Development and validation of a quantitative LC-tandem MS assay for hexadeca-4,7,10,13-tetraenoic acid in human and mouse plasma. J Chromatogr B Analyt Technol Biomed Life Sci. 2013;925:16–9.  https://doi.org/10.1016/j.jchromb.2013.01.012.
  24. 24.
    Gillet LC, Navarro P, Tate S, Rost H, Selevsek N, Reiter L, et al. Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: a new concept for consistent and accurate proteome analysis. Mol Cell Proteomics. 2012;11(6):O111.016717.  https://doi.org/10.1074/mcp.O111.016717.
  25. 25.
    Zhang Y, Bilbao A, Bruderer T, Luban J, Strambio-De-Castillia C, Lisacek F, et al. The use of variable Q1 isolation windows improves selectivity in LC-SWATH-MS acquisition. J Proteome Res. 2015;14(10):4359–71.  https://doi.org/10.1021/acs.jproteome.5b00543.
  26. 26.
    Hopfgartner G, Tonoli D, Varesio E. High-resolution mass spectrometry for integrated qualitative and quantitative analysis of pharmaceuticals in biological matrices. Anal Bioanal Chem. 2012;402(8):2587–96.  https://doi.org/10.1007/s00216-011-5641-8.CrossRefGoogle Scholar
  27. 27.
    Bonner R, Hopfgartner G. SWATH acquisition mode for drug metabolism and metabolomics investigations. Bioanalysis. 2016;8(16):1735–50.  https://doi.org/10.4155/bio-2016-0141.CrossRefGoogle Scholar
  28. 28.
    Siegel D, Meinema AC, Permentier H, Hopfgartner G, Bischoff R. Integrated quantification and identification of aldehydes and ketones in biological samples. Anal Chem. 2014;86(10):5089–100.  https://doi.org/10.1021/ac500810r.CrossRefGoogle Scholar
  29. 29.
    Bruderer T, Varesio E, Hopfgartner G. The use of LC predicted retention times to extend metabolites identification with SWATH data acquisition. J Chromatogr B Analyt Technol Biomed Life Sci. 2017;1071:3–10.  https://doi.org/10.1016/j.jchromb.2017.07.016.CrossRefGoogle Scholar
  30. 30.
    Bruderer T, Varesio E, Hidasi AO, Duchoslav E, Burton L, Bonner R, et al. Metabolomic spectral libraries for data-independent SWATH liquid chromatography mass spectrometry acquisition. Anal Bioanal Chem. 2018;410(7):1873–84.  https://doi.org/10.1007/s00216-018-0860-x.
  31. 31.
    Cajka T, Fiehn O. LC–MS-based lipidomics and automated identification of lipids using the LipidBlast in-silico MS/MS library. In: Bhattacharya SK, editor. Lipidomics: Methods and protocols. New York: Springer New York; 2017. p. 149–70.CrossRefGoogle Scholar
  32. 32.
    Tsugawa H, Cajka T, Kind T, Ma Y, Higgins B, Ikeda K, et al. MS-DIAL: data-independent MS/MS deconvolution for comprehensive metabolome analysis. Nat Methods. 2015;12(6):523–6.  https://doi.org/10.1038/nmeth.3393.
  33. 33.
    Kind T, Liu KH, Lee DY, DeFelice B, Meissen JK, Fiehn O. LipidBlast in silico tandem mass spectrometry database for lipid identification. Nat Methods. 2013;10(8):755–8.  https://doi.org/10.1038/nmeth.2551.CrossRefGoogle Scholar
  34. 34.
    Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959;37(8):911–7.  https://doi.org/10.1139/o59-099.CrossRefGoogle Scholar
  35. 35.
    Retra K, Bleijerveld OB, van Gestel RA, Tielens AG, van Hellemond JJ, Brouwers JF. A simple and universal method for the separation and identification of phospholipid molecular species. Rapid Commun Mass Spectrom. 2008;22(12):1853-1862.  https://doi.org/10.1002/rcm.3562.
  36. 36.
    Kim HY, Salem N Jr. Separation of lipid classes by solid phase extraction. J Lipid Res. 1990;31(12):2285–9.Google Scholar
  37. 37.
    ICH Expert Working Group. Validation of analytical procedures: text and methodology. Geneva: Proceedings of the international conference on harmonisation of technical requirements for registration of pharmaceuticals for human use; 2005.Google Scholar
  38. 38.
    Matuszewski BK, Constanzer ML, Chavez-Eng CM. Strategies for the assessment of matrix effect in quantitative bioanalytical methods based on HPLC-MS/MS. Anal Chem. 2003;75(13):3019–30.CrossRefGoogle Scholar
  39. 39.
    Matuszewski BK. Standard line slopes as a measure of a relative matrix effect in quantitative HPLC-MS bioanalysis. J Chromatogr B Analyt Technol Biomed Life Sci. 2006;830(2):293–300.  https://doi.org/10.1016/j.jchromb.2005.11.009.CrossRefGoogle Scholar
  40. 40.
    Drotleff B, Hallschmid M, Lämmerhofer M. Quantification of steroid hormones in plasma using a surrogate calibrant approach and UHPLC-ESI-QTOF-MS/MS with SWATH-acquisition combined with untargeted profiling. Anal Chim Acta. 2018;1022:70–80.  https://doi.org/10.1016/j.aca.2018.03.040.CrossRefGoogle Scholar
  41. 41.
    Cajka T, Davis R, Austin KJ, Newman JW, German JB, Fiehn O, et al. Using a lipidomics approach for nutritional phenotyping in response to a test meal containing gamma-linolenic acid. Metabolomics. 2016;12(8):127.  https://doi.org/10.1007/s11306-016-1075-9.
  42. 42.
    Lintonen TP, Baker PR, Suoniemi M, Ubhi BK, Koistinen KM, Duchoslav E, et al. Differential mobility spectrometry-driven shotgun lipidomics. Anal Chem. 2014;86(19):9662–9.  https://doi.org/10.1021/ac5021744.
  43. 43.
    Wernisch S, Afshinnia F, Rajendiran T, Pennathur S. Probing the application range and selectivity of a differential mobility spectrometry–mass spectrometry platform for metabolomics. Anal Bioanal Chem. 2018;410(12):2865–77.  https://doi.org/10.1007/s00216-018-0978-x.CrossRefGoogle Scholar
  44. 44.
    Schlotterbeck J, Kolb A, Lämmerhofer M. Free fatty acid profiling in marine algae extract by LC-MS/MS and isolation as well as quantification of the ω-3 fatty acid hexadeca-4,7,10,13-tetraenoic acid. J Sep Sci. 2018;  https://doi.org/10.1002/jssc.201800780

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Jörg Schlotterbeck
    • 1
  • Malgorzata Cebo
    • 1
  • Agnes Kolb
    • 1
  • Michael Lämmerhofer
    • 1
    Email author
  1. 1.Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)AnalysisUniversity of TübingenTübingenGermany

Personalised recommendations