Analytical and Bioanalytical Chemistry

, Volume 411, Issue 2, pp 471–478 | Cite as

Study of the enantioselectivity and recognition mechanism of sulfhydryl-compound-functionalized gold nanochannel membranes

  • Lu HuangEmail author
  • Qi Lin
  • Yanxia Li
  • Guocai Zheng
  • Yiting ChenEmail author
Research Paper


Two new chiral membranes were prepared by modification of gold nanochannel membranes with d-penicillamine and N-acetyl-l-cysteine and were characterized by scanning electron microscopy and X-ray photoelectron spectroscopy. The effects of key factors such as the gold deposition time, the pH, and the concentration of sodium dihydrogen phosphate on the separation factor are discussed. Chiral resolution of amino acid enantiomers by the chiral membranes was investigated. The experimental results show that the d-penicillamine-modified membrane has good enantioselectivity toward tyrosine and phenylalanine enantiomers, whereas the N-acetyl-l-cysteine-modified membrane has good enantioselectivity toward tyrosine and tryptophan enantiomers. Furthermore, the chiral recognition mechanism was studied by density functional theory. The calculation results indicate that the basic chiral recognition system of d-penicillamine complexes involves only one chiral selector and one selected enantiomer, whereas that of N-acetyl-l-cysteine complexes involves two chiral selectors and one selected enantiomer. Finally, the NH3+ group of d-penicillamine is proved to play an important role in enhancing interactions between complexes and improving enantioselectivity.

Graphical abstract

Enantioselective interactions between amino acid enantiomers and sulfhydryl-compound-functionalized gold nanochannel membranes


Chiral resolution Chiral nanochannel membrane Sulfhydryl compounds Recognition mechanism Density functional theory 



Amino acid


Chiral selector


Density functional theory




Gold nanochannel membrane




Phosphate buffer solution


Polycarbonate membrane




Selected enantiomer







This work was supported by the Natural Sciences Funding of Fujian Province (2017J01418, 2016J05040), the Fujian Provincial Youth Natural Fund Key Project (JZ160468), and the Science and Technology Project of Minjiang University (MYK17008, MYK17010). The authors thank the National Supercomputing Centre (Singapore) for the use of the high-performance computing service.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Supplementary material

216_2018_1464_MOESM1_ESM.pdf (143 kb)
ESM 1 (PDF 142 kb)


  1. 1.
    Meng C, Sheng Y, Chen Q, Tan H, Liu H. Exceptional chiral separation of amino acid modified graphene oxide membranes with high-flux. J Membr Sci. 2017;526:25–31.CrossRefGoogle Scholar
  2. 2.
    Uthoff F, Reimer A, Liese A, Gröger H. Enantioselective synthesis of chiral amines through enzymatic resolution under solvent-free conditions with malonate as reagent for acylation. Sustain Chem Pharm. 2017;5:42–5.CrossRefGoogle Scholar
  3. 3.
    Xiouras C, Fytopoulos A, Jordens J, Boudouvis AG, Van Gerven T, Stefanidis GD. Applications of ultrasound to chiral crystallization, resolution and deracemization. Ultrason Sonochem. 2018;43:184-192.Google Scholar
  4. 4.
    Du Y, Luo L, Sun S, Jiang Z, Guo X. Enantioselective separation and determination of miconazole in rat plasma by chiral LC–MS/MS: application in a stereoselective pharmacokinetic study. Anal Bioanal Chem. 2017;409(27):6315–23.CrossRefGoogle Scholar
  5. 5.
    Fernandes C, Tiritan ME, Pinto MM. Chiral separation in preparative scale: a brief overview of membranes as tools for enantiomeric separation. Symmetry. 2017;9(10):206.CrossRefGoogle Scholar
  6. 6.
    Kim J-S, Chun K-Y, Han C-S. Ion channel-based flexible temperature sensor with humidity insensitivity. Sens Actuators A. 2018;271:139–45.CrossRefGoogle Scholar
  7. 7.
    Si J, Wang H, Lu S, Xu X, Peng S, Xiang Y. In situ construction of interconnected ion transfer channels in anion-exchange membranes for fuel cell application. J Mater Chem A. 2017;5(8):4003–10.CrossRefGoogle Scholar
  8. 8.
    Zheng Y-B, Zhao S, Cao S-H, Cai S-L, Cai X-H, Li Y-Q. A temperature, pH and sugar triple-stimuli-responsive nanofluidic diode. Nanoscale. 2017;9(1):433–9.CrossRefGoogle Scholar
  9. 9.
    Boersma AJ, Bayley H. Continuous stochastic detection of amino acid enantiomers with a protein nanopore. Angew Chem Int Ed. 2012;51(38):9606–9.CrossRefGoogle Scholar
  10. 10.
    X-f K, Cheley S, Guan X, Bayley H. Stochastic detection of enantiomers. J Am Chem Soc. 2006;128(33):10684–5.CrossRefGoogle Scholar
  11. 11.
    Han C, Hou X, Zhang H, Guo W, Li H, Jiang L. Enantioselective recognition in biomimetic single artificial nanochannels. J Am Chem Soc. 2011;133(20):7644–7.CrossRefGoogle Scholar
  12. 12.
    Liu Y, Li P, Xie L, Fan D, Huang S. β-cyclodextrin modified silica nanochannel membrane for chiral separation. J Membr Sci. 2014;453:12–7.CrossRefGoogle Scholar
  13. 13.
    Sun Z, Zhang F, Zhang X, Tian D, Jiang L, Li H. Chiral recognition of Arg based on label-free PET nanochannel. Chem Commun. 2015;51(23):4823–6.CrossRefGoogle Scholar
  14. 14.
    Xie G, Tian W, Wen L, Xiao K, Zhang Z, Liu Q, et al. Chiral recognition of L-tryptophan with beta-cyclodextrin-modified biomimetic single nanochannel. Chem Commun. 2015;51(15):3135–8.CrossRefGoogle Scholar
  15. 15.
    Han X, Huang J, Yuan C, Liu Y, Cui Y. Chiral 3D covalent organic frameworks for high performance liquid chromatographic enantioseparation. J Am Chem Soc. 2018;140(3):892–5.CrossRefGoogle Scholar
  16. 16.
    Martell JD, Porter-Zasada LB, Forse AC, Siegelman RL, Gonzalez MI, Oktawiec J, et al. Enantioselective recognition of ammonium carbamates in a chiral metal–organic framework. J Am Chem Soc. 2017;139(44):16000–12.CrossRefGoogle Scholar
  17. 17.
    Meinds TG, Pinxterhuis EB, Schuur B, de Vries JG, Feringa BL, Winkelman JG, et al. Proof of concept for continuous enantioselective liquid–liquid extraction in capillary microreactors using 1-octanol as a sustainable solvent. Green Chem. 2017;19(18):4334–43.CrossRefGoogle Scholar
  18. 18.
    Navarro-Sanchez J, Argente-Garcia AI, Moliner-Martinez Y, Roca-Sanjuan D, Antypov D, Campíns-Falcó P, et al. Peptide metal–organic frameworks for enantioselective separation of chiral drugs. J Am Chem Soc. 2017;139(12):4294–7.CrossRefGoogle Scholar
  19. 19.
    Qian H-L, Yang C-X, Yan X-P. Bottom-up synthesis of chiral covalent organic frameworks and their bound capillaries for chiral separation. Nat Commun. 2016;7:12104.CrossRefGoogle Scholar
  20. 20.
    Weng X, Baez JE, Khiterer M, Hoe MY, Bao Z, Shea KJ. Chiral polymers of intrinsic microporosity: selective membrane permeation of enantiomers. Angew Chem Int Ed. 2015;54(38):11214–8.CrossRefGoogle Scholar
  21. 21.
    Shimomura K, Ikai T, Kanoh S, Yashima E, Maeda K. Switchable enantioseparation based on macromolecular memory of a helical polyacetylene in the solid state. Nat Chem. 2014;6(5):429–34.CrossRefGoogle Scholar
  22. 22.
    Cecilio Fonseca M, Santos da Silva RC, Nascimento CS, Bastos Borges K. Computational contribution to the electrophoretic enantiomer separation mechanism and migration order using modified β-cyclodextrins. Electrophoresis. 2017;38(15):1860–8.CrossRefGoogle Scholar
  23. 23.
    Yang X, Yan Z, Yu T, Du Y, Chen J, Liu Z, et al. Study of the enantioselectivity and recognition mechanism of chiral dual system based on chondroitin sulfate D in capillary electrophoresis. Anal Bioanal Chem. 2018:1–10.Google Scholar
  24. 24.
    Hauser AW, Mardirossian N, Panetier JA, Head-Gordon M, Bell AT, Schwerdtfeger P. Functionalized graphene as a gatekeeper for chiral molecules: an alternative concept for chiral separation. Angew Chem Int Ed. 2014;53(37):9957–60.CrossRefGoogle Scholar
  25. 25.
    Šolomek TS, Powers-Riggs NE, Wu Y-L, Young RM, Krzyaniak MD, Horwitz NE, et al. Electron hopping and charge separation within a naphthalene-1,4:5,8-bis(dicarboximide) chiral covalent organic cage. J Am Chem Soc. 2017;139(9):3348–51.CrossRefGoogle Scholar
  26. 26.
    Walekar LS, Pawar SP, Kondekar UR, Gunjal DB, Anbhule PV, Patil SR, et al. Spectroscopic investigation of interaction between carbon quantum dots and D-penicillamine capped gold nanoparticles. J Fluorescence. 2015;25(4):1085–93.CrossRefGoogle Scholar
  27. 27.
    Su H, Zheng Q, Li H. Colorimetric detection and separation of chiral tyrosine based on N-acetyl-L-cysteine modified gold nanoparticles. J Mater Chem. 2012;22(14):6546–8.CrossRefGoogle Scholar
  28. 28.
    Huang L, Li Y, Lin Q, Lou B, Chen Y. Enantioselective permeations of amino acids through l-proline-modified gold nanochannel membrane: an experimental and theoretical study. Amino Acids. 2018;50(11):1549–56.CrossRefGoogle Scholar
  29. 29.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, et al. Gaussian 16, revision A.03. Wallingford: Gaussian; 2016.Google Scholar
  30. 30.
    Politzer P, Murray JS, Clark T. Mathematical modeling and physical reality in noncovalent interactions. J Mol Model. 2015;21(3):52.CrossRefGoogle Scholar
  31. 31.
    Ho J, Ertem MZ. Calculating free energy changes in continuum solvation models. J Phys Chem B. 2016;120(7):1319–29.CrossRefGoogle Scholar
  32. 32.
    López-Ramírez M, Arenas J, Otero J, Castro J. Surface-enhanced Raman scattering of d-penicillamine on silver colloids. J Raman Spectrosc. 2004;35(5):390–4.CrossRefGoogle Scholar
  33. 33.
    Noszál B, Visky D, Kraszni M. Population, acid–base, and redox properties of N-acetylcysteine conformers. J Med Chem. 2000;43(11):2176–82.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Chemical Engineering and Materials, Ocean CollegeMinjiang UniversityFuzhouChina
  2. 2.Singapore University of Technology and DesignSingaporeSingapore

Personalised recommendations