Advertisement

Analytical and Bioanalytical Chemistry

, Volume 411, Issue 2, pp 459–469 | Cite as

Improving deep proteome and PTMome coverage using tandem HILIC-HPRP peptide fractionation strategy

  • Zeyu Sun
  • Feiyang Ji
  • Zhengyi Jiang
  • Lanjuan LiEmail author
Research Paper

Abstract

Despite being orthogonal to reverse-phase separation and valuable for posttranslational modification (PTM) pre-enrichment, hydrophilic interaction liquid chromatography (HILIC) has not been widely adopted for large-scale proteomic applications. Here, we first evaluated the performance of HILIC in comparison with the popular high-pH reverse-phase (HPRP) separation, as the first dimension for tryptic peptide fractionation in a shotgun workflow to characterize the complex 293T cell proteome. The data indicated that the complementary nature of HILIC and HPRP for peptide separation was mainly due to different hydrophobicity preferences. Realizing that uncaptured components from one mode can be resolved in the other mode, we then designed and compared two multidimensional separation schemes using HILIC and HPRP in tandem for peptide prefractionation, in terms of identification efficiency and coverage at peptide, protein, and PTM levels. A total of 22,604 and 23,566 peptides corresponding to 4481 and 4436 proteins from 293T cell lysate were detected using HILIC-HPRP- and HPRP-HILIC-based shotgun proteomics workflow, respectively. In addition, without assistance of enrichment techniques, the tandem fractionation methods aided to identify 46 different PTMs from over 10,000 of spectra using blind modification search algorithm. We concluded that HILIC is a valuable alternative option for peptide prefractionation in a large-scale proteomic study, but can be further augmented with the use of a secondary HPRP separation.

Keywords

Hydrophilic interaction liquid chromatography Multidimensional liquid chromatography Mass spectrometry Proteomics Posttranslational modifications 

Abbreviations

ABC

Ammonium bicarbonate

ACN

Acetonitrile

AGC

Automatic gain control

AF

Ammonium formate

DDA

Data-dependent acquisition

FA

Formic acid

FASP

Filter-assisted sample preparation

FDR

False discovery rate

HPRP

High pH reverse phase

HILIC

Hydrophilic interaction liquid chromatography

IAA

Iodoacetamide

LC-MSMS

Liquid chromatography coupled with tandem mass spectrometry

MDLC

Multidimensional liquid chromatography

PSM

Peptide-spectral matching

PTMs

Posttranslational modifications

RPLC

Reverse-phase liquid chromatography

RT

Room temperature

TEAB

Triethylammonium bicarbonate

Notes

Acknowledgments

We thank Ms. Jing Jiang for LC-MS technical support.

Funding information

This work was supported by The National Key Research and Development Program (2017YFC1200104), National Natural Science Foundation of China (81400589), Independent Project Fund of the State Key Laboratory for Diagnosis and Treatment of Infectious Disease, and the Zhejiang Provincial Medicine and Health Science and Technology Project (2016147735).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Supplementary material

216_2018_1462_MOESM1_ESM.pdf (290 kb)
ESM 1 (PDF 290 kb)

References

  1. 1.
    Mann M, Kulak NA, Nagaraj N, Cox J. The coming age of complete, accurate, and ubiquitous proteomes. Mol Cell. 2013;49(4):583–90.  https://doi.org/10.1016/j.molcel.2013.01.029.CrossRefGoogle Scholar
  2. 2.
    Schwanhausser B, Busse D, Li N, Dittmar G, Schuchhardt J, Wolf J, et al. Global quantification of mammalian gene expression control. Nature. 2011;473(7347):337–42.  https://doi.org/10.1038/nature10098.CrossRefGoogle Scholar
  3. 3.
    Zubarev RA. The challenge of the proteome dynamic range and its implications for in-depth proteomics. Proteomics. 2013;13(5):723–6.  https://doi.org/10.1002/pmic.201200451.CrossRefGoogle Scholar
  4. 4.
    Anderson NL. Counting the proteins in plasma. Clin Chem. 2010;56(11):1775–6.  https://doi.org/10.1373/clinchem.2010.146167.CrossRefGoogle Scholar
  5. 5.
    Hortin GL, Sviridov D. The dynamic range problem in the analysis of the plasma proteome. J Proteome. 2010;73(3):629–36.  https://doi.org/10.1016/j.jprot.2009.07.001.CrossRefGoogle Scholar
  6. 6.
    Alpert AJ. Protein fractionation and enrichment prior to proteomics sample preparation. Adv Exp Med Biol. 2016;919:23–41.  https://doi.org/10.1007/978-3-319-41448-5_2.CrossRefGoogle Scholar
  7. 7.
    Lenz C, Urlaub H. Separation methodology to improve proteome coverage depth. Expert Rev Proteomics. 2014;11(4):409–14.  https://doi.org/10.1586/14789450.2014.919862.CrossRefGoogle Scholar
  8. 8.
    Boersema PJ, Divecha N, Heck AJ, Mohammed S. Evaluation and optimization of ZIC-HILIC-RP as an alternative MudPIT strategy. J Proteome Res. 2007;6(3):937–46.  https://doi.org/10.1021/pr060589m.CrossRefGoogle Scholar
  9. 9.
    Gilar M, Olivova P, Daly AE, Gebler JC. Orthogonality of separation in two-dimensional liquid chromatography. Anal Chem. 2005;77(19):6426–34.  https://doi.org/10.1021/ac050923i.CrossRefGoogle Scholar
  10. 10.
    Nandakishor Swarge B, Roseboom W, Zheng L, Abhyankar WR, Brul S, Koster CG, et al. ‘One-pot’ sample processing method for proteome-wide analysis of microbial cells and spores. Proteomics Clin Appl. 2018.  https://doi.org/10.1002/prca.201700169.
  11. 11.
    Wippel HH, Santos MDM, Clasen MA, Kurt LU, Nogueira FCS, Carvalho CE, et al. Comparing intestinal versus diffuse gastric cancer using a PEFF-oriented proteomic pipeline. J Proteome. 2018;171:63–72.  https://doi.org/10.1016/j.jprot.2017.10.005.CrossRefGoogle Scholar
  12. 12.
    Arshid S, Tahir M, Fontes B, Montero EF, Castro MS, Sidoli S, et al. Neutrophil proteomic analysis reveals the participation of antioxidant enzymes, motility and ribosomal proteins in the prevention of ischemic effects by preconditioning. J Proteome. 2017;151:162–73.  https://doi.org/10.1016/j.jprot.2016.05.016.CrossRefGoogle Scholar
  13. 13.
    Longworth J, Noirel J, Pandhal J, Wright PC, Vaidyanathan S. HILIC- and SCX-based quantitative proteomics of Chlamydomonas reinhardtii during nitrogen starvation induced lipid and carbohydrate accumulation. J Proteome Res. 2012;11(12):5959–71.  https://doi.org/10.1021/pr300692t.CrossRefGoogle Scholar
  14. 14.
    Di Palma S, Mohammed S, Heck AJ. ZIC-cHILIC as a fractionation method for sensitive and powerful shotgun proteomics. Nat Protoc. 2012;7(11):2041–55.  https://doi.org/10.1038/nprot.2012.124.CrossRefGoogle Scholar
  15. 15.
    Bensaddek D, Nicolas A, Lamond AI. Evaluating the use of HILIC in large-scale, multi dimensional proteomics: horses for courses? Int J Mass Spectrom. 2015;391:105–14.  https://doi.org/10.1016/j.ijms.2015.07.029.CrossRefGoogle Scholar
  16. 16.
    Guo Y. Recent progress in the fundamental understanding of hydrophilic interaction chromatography (HILIC). Analyst. 2015;140(19):6452–66.  https://doi.org/10.1039/c5an00670h.CrossRefGoogle Scholar
  17. 17.
    Hendrickx S, Adams E, Cabooter D. Recent advances in the application of hydrophilic interaction chromatography for the analysis of biological matrices. Bioanalysis. 2015;7(22):2927–45.  https://doi.org/10.4155/bio.15.200.CrossRefGoogle Scholar
  18. 18.
    Leitner A. Enrichment strategies in phosphoproteomics. Methods Mol Biol. 2016;1355:105–21.  https://doi.org/10.1007/978-1-4939-3049-4_7.CrossRefGoogle Scholar
  19. 19.
    Ma M, Zhao X, Chen S, Zhao Y, Yang L, Feng Y, et al. Strategy based on deglycosylation, multiprotease, and hydrophilic interaction chromatography for large-scale profiling of protein methylation. Anal Chem. 2017;89(23):12909–17.  https://doi.org/10.1021/acs.analchem.7b03673.CrossRefGoogle Scholar
  20. 20.
    Song E, Mechref Y. Defining glycoprotein cancer biomarkers by MS in conjunction with glycoprotein enrichment. Biomarker Med. 2015;9(9):835–44.  https://doi.org/10.2217/bmm.15.55.CrossRefGoogle Scholar
  21. 21.
    Zauner G, Deelder AM, Wuhrer M. Recent advances in hydrophilic interaction liquid chromatography (HILIC) for structural glycomics. Electrophoresis. 2011;32(24):3456–66.  https://doi.org/10.1002/elps.201100247.CrossRefGoogle Scholar
  22. 22.
    Zappacosta F, Scott GF, Huddleston MJ, Annan RS. An optimized platform for hydrophilic interaction chromatography-immobilized metal affinity chromatography enables deep coverage of the rat liver phosphoproteome. J Proteome Res. 2015;14(2):997–1009.  https://doi.org/10.1021/pr501025e.CrossRefGoogle Scholar
  23. 23.
    Scott NE, Cordwell SJ. Enrichment and identification of bacterial glycopeptides by mass spectrometry. Methods Mol Biol. 2015;1295:355–68.  https://doi.org/10.1007/978-1-4939-2550-6_25.CrossRefGoogle Scholar
  24. 24.
    Hao P, Ren Y, Alpert AJ, Sze SK. Detection, evaluation and minimization of nonenzymatic deamidation in proteomic sample preparation. Mol Cell Proteomics. 2011;10(10):O111.009381.  https://doi.org/10.1074/mcp.O111.009381.CrossRefGoogle Scholar
  25. 25.
    Zhao Y, Kong RP, Li G, Lam MP, Law CH, Lee SM, et al. Fully automatable two-dimensional hydrophilic interaction liquid chromatography-reversed phase liquid chromatography with online tandem mass spectrometry for shotgun proteomics. J Sep Sci. 2012;35(14):1755–63.  https://doi.org/10.1002/jssc.201200054.CrossRefGoogle Scholar
  26. 26.
    Sun Z, Liu X, Jiang J, Huang H, Wang J, Wu D, et al. Toward biomarker development in large clinical cohorts: an integrated high-throughput 96-well-plate-based sample preparation workflow for versatile downstream proteomic analyses. Anal Chem. 2016;88(17):8518–25.  https://doi.org/10.1021/acs.analchem.6b01333.CrossRefGoogle Scholar
  27. 27.
    Krokhin OV, Ezzati P, Spicer V. Peptide retention time prediction in hydrophilic interaction liquid chromatography: data collection methods and features of additive and sequence-specific models. Anal Chem. 2017;89(10):5526–33.  https://doi.org/10.1021/acs.analchem.7b00537.CrossRefGoogle Scholar
  28. 28.
    Spicer V, Krokhin OV. Peptide retention time prediction in hydrophilic interaction liquid chromatography. Comparison of separation selectivity between bare silica and bonded stationary phases. J Chromatogr A. 2018;1534:75–84.  https://doi.org/10.1016/j.chroma.2017.12.046.CrossRefGoogle Scholar
  29. 29.
    Na S, Bandeira N, Paek E. Fast multi-blind modification search through tandem mass spectrometry. Mol Cell Proteomics. 2012;11(4):M111.010199.  https://doi.org/10.1074/mcp.M111.010199.CrossRefGoogle Scholar
  30. 30.
    Creasy DM, Cottrell JS. Unimod: protein modifications for mass spectrometry. Proteomics. 2004;4(6):1534–6.  https://doi.org/10.1002/pmic.200300744.CrossRefGoogle Scholar
  31. 31.
    Suttapitugsakul S, Xiao H, Smeekens J, Wu R. Evaluation and optimization of reduction and alkylation methods to maximize peptide identification with MS-based proteomics. Mol BioSyst. 2017;13(12):2574–82.  https://doi.org/10.1039/c7mb00393e.CrossRefGoogle Scholar
  32. 32.
    Hains PG, Robinson PJ. The impact of commonly used alkylating agents on artifactual peptide modification. J Proteome Res. 2017;16(9):3443–7.  https://doi.org/10.1021/acs.jproteome.7b00022.CrossRefGoogle Scholar
  33. 33.
    Muller T, Winter D. Systematic evaluation of protein reduction and alkylation reveals massive unspecific side effects by iodine-containing reagents. Mol Cell Proteomics. 2017;16(7):1173–87.  https://doi.org/10.1074/mcp.M116.064048.CrossRefGoogle Scholar
  34. 34.
    Kollipara L, Zahedi RP. Protein carbamylation: in vivo modification or in vitro artefact? Proteomics. 2013;13(6):941–4.  https://doi.org/10.1002/pmic.201200452.CrossRefGoogle Scholar
  35. 35.
    Meier F, Beck S, Grassl N, Lubeck M, Park MA, Raether O, et al. Parallel accumulation-serial fragmentation (PASEF): multiplying sequencing speed and sensitivity by synchronized scans in a trapped ion mobility device. J Proteome Res. 2015;14(12):5378–87.  https://doi.org/10.1021/acs.jproteome.5b00932.CrossRefGoogle Scholar
  36. 36.
    Hebert AS, Thoing C, Riley NM, Kwiecien NW, Shiskova E, Huguet R, et al. Improved precursor characterization for data-dependent mass spectrometry. Anal Chem. 2018;90(3):2333–40.  https://doi.org/10.1021/acs.analchem.7b04808.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Zeyu Sun
    • 1
  • Feiyang Ji
    • 1
  • Zhengyi Jiang
    • 1
  • Lanjuan Li
    • 1
    Email author
  1. 1.State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of MedicineZhejiang UniversityHangzhouChina

Personalised recommendations