Advertisement

Analytical and Bioanalytical Chemistry

, Volume 411, Issue 9, pp 1905–1913 | Cite as

Silver and gold nanoparticles as multi-chromatic lateral flow assay probes for the detection of food allergens

  • Laura AnfossiEmail author
  • Fabio Di Nardo
  • Alida Russo
  • Simone Cavalera
  • Cristina Giovannoli
  • Giulia Spano
  • Sabine Baumgartner
  • Kathrin Lauter
  • Claudio Baggiani
Research Paper
Part of the following topical collections:
  1. Nanoparticles for Bioanalysis

Abstract

In this study, we report the simultaneous use of gold and silver nanoparticles to set a multicolor multiplex lateral flow immunoassay (xLFIA). Silver nanoparticles (AgNPs), spherical in shape and characterized by a brilliant yellow color, were obtained by a new viable one-step synthetic protocol. AgNPs were stable over time and acceptably robust to conditions used for fabricating LFIA devices. These AgNPs were employed as a colorimetric probe in combination with two different kinds of gold nanoparticles (AuNPs) to set a visual xLFIA for detecting allergens. Surface plasmon resonance peaks of probes (AgNPs, spherical and desert rose-like AuNPs) were centered at 420, 525, and 620 nm, respectively. Therefore, the xLFIA output was easily interpreted through a “yellow magenta cyan (YMC)” color code. The prospect of the YMC xLFIA was demonstrated by simultaneously detecting three major allergens in bakery products. Antibodies directed towards casein, ovalbumin, and hazelnut allergenic proteins were individually adsorbed onto metal nanoparticles to produce three differently colored specific probes. These were inserted in a LFIA comprising three lines, each responsive for one allergen. The trichromatic xLFIA was able to detect allergenic proteins at levels as low as 0.1 mg/l and enabled the easy identification of the allergens in commercial biscuits based on the color of the probes.

Graphical Abstract

Keywords

Immunochromatographic strip test Multiplex detection Ovalbumin Casein Hazelnut Colorimetry 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

216_2018_1451_MOESM1_ESM.pdf (1 mb)
ESM 1 (PDF 1047 kb)

References

  1. 1.
    Hanafiah KM, Arifin N, Bustami Y, Noordin R, Garcia M, Anderson D. Development of multiplexed infectious disease lateral flow assays: challenges and opportunities. Diagnostics. 2017;7:51.  https://doi.org/10.3390/diagnostics7030051.CrossRefGoogle Scholar
  2. 2.
    Wang C, Li X, Peng T, Wang Z, Wen K, Jiang H. Latex bead and colloidal gold applied in a multiplex immunochromatographic assay for high-throughput detection of three classes of antibiotic residues in milk. Food Control. 2017;77:1–7.CrossRefGoogle Scholar
  3. 3.
    Dincer C, Bruch R, Kling A, Dittrich PS, Urban GA. Multiplexed point-of-care testing – xPOCT. Trends Biotechnol. 2017;35:728–42.CrossRefGoogle Scholar
  4. 4.
    Song S, Liu N, Zhao Z, Ediage EN, Wu S, Sun C, et al. Multiplex lateral flow immunoassay for mycotoxin determination. Anal Chem. 2014;86:4995–5001.CrossRefGoogle Scholar
  5. 5.
    Peng J, Wang Y, Liu L, Kuang H, Liand A, Xu C. Multiplex lateral flow immunoassay for five antibiotics detection based on gold nanoparticle aggregations. RSC Adv. 2016;6:7798–805.CrossRefGoogle Scholar
  6. 6.
    Wang Q, Liu Y, Wang M, Chen Y, Jiang W. A multiplex immunochromatographic test using gold nanoparticles for the rapid and simultaneous detection of four nitrofuran metabolites in fish samples. Anal Bioanal Chem. 2018;410:223–33.  https://doi.org/10.1007/s00216-017-0714-y.CrossRefGoogle Scholar
  7. 7.
    Taranova NA, Berlina AN, Zherdev AV, Dzantiev BB. ‘Traffic light’ immunochromatographic test based on multicolor quantum dots for the simultaneous detection of several antibiotics in milk. Biosens Bioelectron. 2015;63:255–61.  https://doi.org/10.1016/j.bios.2014.07.049.CrossRefGoogle Scholar
  8. 8.
    Gharaat M, Sajedi RH, Shanehsaz M, Jalilian N, Mirshahi M, Gholamzad M. A dextran mediated multicolor immunochromatographic rapid test strip for visual and instrumental simultaneous detection of Vibrio cholera O1 (Ogawa) and Clostridium botulinum toxin A. Microchim Acta. 2017;184:4817–25.CrossRefGoogle Scholar
  9. 9.
    Wang C, Hou F, Ma Y. Simultaneous quantitative detection of multiple tumor markers with a rapid and sensitive multicolor quantum dots based immunochromatographic test strip. Biosens Bioelectron. 2015;68:156–62.  https://doi.org/10.1016/j.bios.2014.12.051.CrossRefGoogle Scholar
  10. 10.
    Fang CC, Chou CC, Yang YQ, Wei-Kai T, Wang YT, Chan YH. Multiplexed detection of tumor markers with multicolor polymer dot-based immunochromatography test strip. Anal Chem. 2018;90:2134–40.  https://doi.org/10.1021/acs.analchem.7b04411.CrossRefGoogle Scholar
  11. 11.
    Lee S, Mehta S, Erickson D. Two-color lateral flow assay for multiplex detection of causative agents behind acute febrile illnesses. Anal Chem. 2016;88:8359–63.  https://doi.org/10.1021/acs.analchem.6b01828.CrossRefGoogle Scholar
  12. 12.
    Di Nardo F, Baggiani C, Giovannoli C, Spano G, Anfossi L. Multicolor immunochromatographic strip test based on gold nanoparticles for the determination of aflatoxin B1 and fumonisins. Microchim Acta. 2017;184:1295–304.CrossRefGoogle Scholar
  13. 13.
    Yen CW, de Puig H, Tam JO, Gómez-Márquez J, Bosch I, Hamad-Schifferli K, Gehrke L. Multicolored silver nanoparticles for multiplexed disease diagnostics: distinguishing dengue, yellow fever, and Ebola viruses. Lab Chip 2015;15:1638–1641. doi:  https://doi.org/10.1039/c5lc00055f.
  14. 14.
    Zhang Q, Ge J, Pham T, Goebl J, Hu J, Lu Z, et al. Reconstruction of silver nanoplates by UV irradiation: tailored optical properties and enhanced stability. Angew Chem Int Ed. 2009;48:3516–9.CrossRefGoogle Scholar
  15. 15.
    Ledwith DM, Whelan AM, Kelly JM. A rapid, straight-forward method for controlling the morphology of stable silver nanoparticles. J Mater Chem. 2007;17:2459–64.CrossRefGoogle Scholar
  16. 16.
    Yang GW, Li H. Sonochemical synthesis of highly monodispersed and size controllable Ag nanoparticles in ethanol solution. Mater Lett. 2008;62:2189–91.CrossRefGoogle Scholar
  17. 17.
    Popa M, Pradell T, Crespo D, Calder ́on-Moreno JM. Stable silver colloidal dispersions using short chain polyethylene glycol. Colloid Surf A 2007;303:184–190.Google Scholar
  18. 18.
    Regulation (EU) No 1169/2011 EU Off J 2011 L 304:18–63.Google Scholar
  19. 19.
    Schubert-Ullrich P, Rudolf J, Ansari P, Galler B, Führer M, Molinelli A, et al. Commercialized rapid immunoanalytical tests for determination of allergenic food proteins: an overview. Anal Bioanal Chem. 2009;395:69–81.  https://doi.org/10.1007/s00216-009-2715-y.CrossRefGoogle Scholar
  20. 20.
    Prado M, Ortea I, Vial S, Rivas J, Calo-Mata P, Barros-Velázquez J. Advanced DNA- and protein-based methods for the detection and investigation of food allergens. Crit Rev Food Sci Nutr. 2016;56:2511–42.CrossRefGoogle Scholar
  21. 21.
    Wen HW, Borejsza-Wysocki W, DeCory TR, Durst RA. Development of a competitive liposome-based lateral flow assay for the rapid detection of the allergenic peanut protein Ara h1. Anal Bioanal Chem. 2005;382:1217–26.  https://doi.org/10.1007/s00216-005-3292-3.CrossRefGoogle Scholar
  22. 22.
    Zheng C, Wang X, Lu Y, Liu Y. Rapid detection of fish major allergen parvalbumin using superparamagnetic nanoparticle-based lateral flow immunoassay. Food Control. 2012;26:446–52.CrossRefGoogle Scholar
  23. 23.
    Wang Y, Deng R, Zhang G, Li Q, Yang J, Sun Y, et al. Rapid and sensitive detection of the food allergen glycinin in powdered milk using a lateral flow colloidal gold immunoassay strip test. J Agric Food Chem. 2015;63:2172–8.  https://doi.org/10.1021/jf5052128.CrossRefGoogle Scholar
  24. 24.
    Takahata Y, Kamiya K, Mastumoto T, Sato T, Shibata R, Morimatsu F. Development of rapid and simple diagnostic kits for food allergens by immunochromatography. J Allergy Clin Immunol. 2004;113:S237.CrossRefGoogle Scholar
  25. 25.
    Ji KM, Chen JJ, Gao C, Liu XY, Xia LX, Liu ZG, et al. A two-site monoclonal antibody immunochromatography assay for rapid detection of peanut allergen Ara h1 in Chinese imported and exported foods. Food Chem. 2011;129:541–5.CrossRefGoogle Scholar
  26. 26.
    Wang Y, Li Z, Pei Y, Li Q, Sun Y, Yang J, et al. Establishment of a lateral flow colloidal gold immunoassay strip for the rapid detection of soybean allergen β-conglycinin. Food Anal Met. 2017;10:2429–35.CrossRefGoogle Scholar
  27. 27.
    Peng J, Song S, Liu L, Kuang H, Xu C. Development of sandwich ELISA and immunochromatographic strip for the detection of peanut allergen Ara h 2. Food Anal Met. 2015;8:2605–11.CrossRefGoogle Scholar
  28. 28.
    Cho CY, Nowatzke W, Oliver K, Garber EA. Multiplex detection of food allergens and gluten. Anal Bioanal Chem. 2015;407:4195–206.  https://doi.org/10.1007/s00216-015-8645-y.CrossRefGoogle Scholar
  29. 29.
    Gomaa A, Boye J. Simultaneous detection of multi-allergens in an incurred food matrix using ELISA, multiplex flow cytometry and liquid chromatography mass spectrometry (LC-MS). Food Chem. 2015;175:585–92.  https://doi.org/10.1016/j.foodchem.2014.12.017.CrossRefGoogle Scholar
  30. 30.
    United States Public Law C. Food allergen labelling and consumer protection act of 2004. Public Law. 2004;08-282:905–11.Google Scholar
  31. 31.
    Homan KA, Souza M, Truby R, Luke GP, Green C, Vreeland E, et al. ACS Nano. 2012;6:641–50.CrossRefGoogle Scholar
  32. 32.
    Horisberger M, Rosset J. Colloidal gold, a useful marker for transmission and scanning electron microscopy. J Histochem Cytochem. 1977;25:295–305.  https://doi.org/10.1177/25.4.323352.CrossRefGoogle Scholar
  33. 33.
    Trashin SA, Cucu T, Devreese B, Adriaens A, De Meulenaer B. Development of a highly sensitive and robust Cor a 9 specific enzyme-linked immunosorbent assay for the detection of hazelnut traces. Anal Chim Acta. 2011;708:116–22.  https://doi.org/10.1016/j.aca.2011.09.036.CrossRefGoogle Scholar
  34. 34.
    Anfossi L, Calderara M, Baggiani C, Giovannoli C, Arletti E, Giraudi G. Development and application of a quantitative lateral flow immunoassay for fumonisins in maize. Anal Chim Acta. 2010;682:104–9.  https://doi.org/10.1016/j.aca.2010.09.045.CrossRefGoogle Scholar
  35. 35.
    Jiang H, Li X, Xiong Y, Pei K, Nie L, Xiong Y. Silver nanoparticle-based fluorescence-quenching lateral flow immunoassay for sensitive detection of ochratoxin a in grape juice and wine. Toxins. 2017;9:83.  https://doi.org/10.3390/toxins9030083.CrossRefGoogle Scholar
  36. 36.
    Oliver C. Conjugation of colloidal gold to proteins. Methods Mol Biol. 2010;588:369–73.  https://doi.org/10.1007/978-1-59745-324-0_39.CrossRefGoogle Scholar
  37. 37.
    Vashist SK, Luong JHT. Bioanalytical requirements and regulatory guidelines for immunoassays, in handbook of immunoassay technologies, Vashist SK, Luong JHT eds. Academic Press 2018.Google Scholar
  38. 38.
    Croote D, Quake SR. Food allergen detection by mass spectrometry: the role of systems biology. NPJ Syst Biol Appl. 2016;2:16022.  https://doi.org/10.1038/npjsba.2016.22.CrossRefGoogle Scholar
  39. 39.
    Ben Rejeb S, Abbott M, Davies D, Cléroux C, Delahaut P. Multi-allergen screening immunoassay for the detection of protein markers of peanut and four tree nuts in chocolate. Food Add Contam. 2005;22:709–15.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Laura Anfossi
    • 1
    Email author
  • Fabio Di Nardo
    • 1
  • Alida Russo
    • 2
  • Simone Cavalera
    • 1
  • Cristina Giovannoli
    • 1
  • Giulia Spano
    • 1
  • Sabine Baumgartner
    • 3
  • Kathrin Lauter
    • 3
  • Claudio Baggiani
    • 1
  1. 1.Department of ChemistryUniversity of TurinTurinItaly
  2. 2.Department of Veterinary ScienceUniversity of TurinTurinItaly
  3. 3.Centre for Analytical Chemistry, Department for Agrobiotechnology TullnUniversity of Natural Resources and Life Sciences (BOKU)TullnAustria

Personalised recommendations