Skip to main content
Log in

Silver and gold nanoparticles as multi-chromatic lateral flow assay probes for the detection of food allergens

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In this study, we report the simultaneous use of gold and silver nanoparticles to set a multicolor multiplex lateral flow immunoassay (xLFIA). Silver nanoparticles (AgNPs), spherical in shape and characterized by a brilliant yellow color, were obtained by a new viable one-step synthetic protocol. AgNPs were stable over time and acceptably robust to conditions used for fabricating LFIA devices. These AgNPs were employed as a colorimetric probe in combination with two different kinds of gold nanoparticles (AuNPs) to set a visual xLFIA for detecting allergens. Surface plasmon resonance peaks of probes (AgNPs, spherical and desert rose-like AuNPs) were centered at 420, 525, and 620 nm, respectively. Therefore, the xLFIA output was easily interpreted through a “yellow magenta cyan (YMC)” color code. The prospect of the YMC xLFIA was demonstrated by simultaneously detecting three major allergens in bakery products. Antibodies directed towards casein, ovalbumin, and hazelnut allergenic proteins were individually adsorbed onto metal nanoparticles to produce three differently colored specific probes. These were inserted in a LFIA comprising three lines, each responsive for one allergen. The trichromatic xLFIA was able to detect allergenic proteins at levels as low as 0.1 mg/l and enabled the easy identification of the allergens in commercial biscuits based on the color of the probes.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hanafiah KM, Arifin N, Bustami Y, Noordin R, Garcia M, Anderson D. Development of multiplexed infectious disease lateral flow assays: challenges and opportunities. Diagnostics. 2017;7:51. https://doi.org/10.3390/diagnostics7030051.

    Article  CAS  Google Scholar 

  2. Wang C, Li X, Peng T, Wang Z, Wen K, Jiang H. Latex bead and colloidal gold applied in a multiplex immunochromatographic assay for high-throughput detection of three classes of antibiotic residues in milk. Food Control. 2017;77:1–7.

    Article  CAS  Google Scholar 

  3. Dincer C, Bruch R, Kling A, Dittrich PS, Urban GA. Multiplexed point-of-care testing – xPOCT. Trends Biotechnol. 2017;35:728–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Song S, Liu N, Zhao Z, Ediage EN, Wu S, Sun C, et al. Multiplex lateral flow immunoassay for mycotoxin determination. Anal Chem. 2014;86:4995–5001.

    Article  CAS  PubMed  Google Scholar 

  5. Peng J, Wang Y, Liu L, Kuang H, Liand A, Xu C. Multiplex lateral flow immunoassay for five antibiotics detection based on gold nanoparticle aggregations. RSC Adv. 2016;6:7798–805.

    Article  CAS  Google Scholar 

  6. Wang Q, Liu Y, Wang M, Chen Y, Jiang W. A multiplex immunochromatographic test using gold nanoparticles for the rapid and simultaneous detection of four nitrofuran metabolites in fish samples. Anal Bioanal Chem. 2018;410:223–33. https://doi.org/10.1007/s00216-017-0714-y.

    Article  CAS  PubMed  Google Scholar 

  7. Taranova NA, Berlina AN, Zherdev AV, Dzantiev BB. ‘Traffic light’ immunochromatographic test based on multicolor quantum dots for the simultaneous detection of several antibiotics in milk. Biosens Bioelectron. 2015;63:255–61. https://doi.org/10.1016/j.bios.2014.07.049.

    Article  CAS  PubMed  Google Scholar 

  8. Gharaat M, Sajedi RH, Shanehsaz M, Jalilian N, Mirshahi M, Gholamzad M. A dextran mediated multicolor immunochromatographic rapid test strip for visual and instrumental simultaneous detection of Vibrio cholera O1 (Ogawa) and Clostridium botulinum toxin A. Microchim Acta. 2017;184:4817–25.

    Article  CAS  Google Scholar 

  9. Wang C, Hou F, Ma Y. Simultaneous quantitative detection of multiple tumor markers with a rapid and sensitive multicolor quantum dots based immunochromatographic test strip. Biosens Bioelectron. 2015;68:156–62. https://doi.org/10.1016/j.bios.2014.12.051.

    Article  CAS  PubMed  Google Scholar 

  10. Fang CC, Chou CC, Yang YQ, Wei-Kai T, Wang YT, Chan YH. Multiplexed detection of tumor markers with multicolor polymer dot-based immunochromatography test strip. Anal Chem. 2018;90:2134–40. https://doi.org/10.1021/acs.analchem.7b04411.

    Article  CAS  PubMed  Google Scholar 

  11. Lee S, Mehta S, Erickson D. Two-color lateral flow assay for multiplex detection of causative agents behind acute febrile illnesses. Anal Chem. 2016;88:8359–63. https://doi.org/10.1021/acs.analchem.6b01828.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Di Nardo F, Baggiani C, Giovannoli C, Spano G, Anfossi L. Multicolor immunochromatographic strip test based on gold nanoparticles for the determination of aflatoxin B1 and fumonisins. Microchim Acta. 2017;184:1295–304.

    Article  CAS  Google Scholar 

  13. Yen CW, de Puig H, Tam JO, Gómez-Márquez J, Bosch I, Hamad-Schifferli K, Gehrke L. Multicolored silver nanoparticles for multiplexed disease diagnostics: distinguishing dengue, yellow fever, and Ebola viruses. Lab Chip 2015;15:1638–1641. doi: https://doi.org/10.1039/c5lc00055f.

  14. Zhang Q, Ge J, Pham T, Goebl J, Hu J, Lu Z, et al. Reconstruction of silver nanoplates by UV irradiation: tailored optical properties and enhanced stability. Angew Chem Int Ed. 2009;48:3516–9.

    Article  CAS  Google Scholar 

  15. Ledwith DM, Whelan AM, Kelly JM. A rapid, straight-forward method for controlling the morphology of stable silver nanoparticles. J Mater Chem. 2007;17:2459–64.

    Article  CAS  Google Scholar 

  16. Yang GW, Li H. Sonochemical synthesis of highly monodispersed and size controllable Ag nanoparticles in ethanol solution. Mater Lett. 2008;62:2189–91.

    Article  CAS  Google Scholar 

  17. Popa M, Pradell T, Crespo D, Calder ́on-Moreno JM. Stable silver colloidal dispersions using short chain polyethylene glycol. Colloid Surf A 2007;303:184–190.

  18. Regulation (EU) No 1169/2011 EU Off J 2011 L 304:18–63.

  19. Schubert-Ullrich P, Rudolf J, Ansari P, Galler B, Führer M, Molinelli A, et al. Commercialized rapid immunoanalytical tests for determination of allergenic food proteins: an overview. Anal Bioanal Chem. 2009;395:69–81. https://doi.org/10.1007/s00216-009-2715-y.

    Article  CAS  PubMed  Google Scholar 

  20. Prado M, Ortea I, Vial S, Rivas J, Calo-Mata P, Barros-Velázquez J. Advanced DNA- and protein-based methods for the detection and investigation of food allergens. Crit Rev Food Sci Nutr. 2016;56:2511–42.

    Article  CAS  PubMed  Google Scholar 

  21. Wen HW, Borejsza-Wysocki W, DeCory TR, Durst RA. Development of a competitive liposome-based lateral flow assay for the rapid detection of the allergenic peanut protein Ara h1. Anal Bioanal Chem. 2005;382:1217–26. https://doi.org/10.1007/s00216-005-3292-3.

    Article  CAS  PubMed  Google Scholar 

  22. Zheng C, Wang X, Lu Y, Liu Y. Rapid detection of fish major allergen parvalbumin using superparamagnetic nanoparticle-based lateral flow immunoassay. Food Control. 2012;26:446–52.

    Article  CAS  Google Scholar 

  23. Wang Y, Deng R, Zhang G, Li Q, Yang J, Sun Y, et al. Rapid and sensitive detection of the food allergen glycinin in powdered milk using a lateral flow colloidal gold immunoassay strip test. J Agric Food Chem. 2015;63:2172–8. https://doi.org/10.1021/jf5052128.

    Article  CAS  PubMed  Google Scholar 

  24. Takahata Y, Kamiya K, Mastumoto T, Sato T, Shibata R, Morimatsu F. Development of rapid and simple diagnostic kits for food allergens by immunochromatography. J Allergy Clin Immunol. 2004;113:S237.

    Article  Google Scholar 

  25. Ji KM, Chen JJ, Gao C, Liu XY, Xia LX, Liu ZG, et al. A two-site monoclonal antibody immunochromatography assay for rapid detection of peanut allergen Ara h1 in Chinese imported and exported foods. Food Chem. 2011;129:541–5.

    Article  CAS  PubMed  Google Scholar 

  26. Wang Y, Li Z, Pei Y, Li Q, Sun Y, Yang J, et al. Establishment of a lateral flow colloidal gold immunoassay strip for the rapid detection of soybean allergen β-conglycinin. Food Anal Met. 2017;10:2429–35.

    Article  Google Scholar 

  27. Peng J, Song S, Liu L, Kuang H, Xu C. Development of sandwich ELISA and immunochromatographic strip for the detection of peanut allergen Ara h 2. Food Anal Met. 2015;8:2605–11.

    Article  Google Scholar 

  28. Cho CY, Nowatzke W, Oliver K, Garber EA. Multiplex detection of food allergens and gluten. Anal Bioanal Chem. 2015;407:4195–206. https://doi.org/10.1007/s00216-015-8645-y.

    Article  CAS  PubMed  Google Scholar 

  29. Gomaa A, Boye J. Simultaneous detection of multi-allergens in an incurred food matrix using ELISA, multiplex flow cytometry and liquid chromatography mass spectrometry (LC-MS). Food Chem. 2015;175:585–92. https://doi.org/10.1016/j.foodchem.2014.12.017.

    Article  CAS  PubMed  Google Scholar 

  30. United States Public Law C. Food allergen labelling and consumer protection act of 2004. Public Law. 2004;08-282:905–11.

    Google Scholar 

  31. Homan KA, Souza M, Truby R, Luke GP, Green C, Vreeland E, et al. ACS Nano. 2012;6:641–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Horisberger M, Rosset J. Colloidal gold, a useful marker for transmission and scanning electron microscopy. J Histochem Cytochem. 1977;25:295–305. https://doi.org/10.1177/25.4.323352.

    Article  CAS  PubMed  Google Scholar 

  33. Trashin SA, Cucu T, Devreese B, Adriaens A, De Meulenaer B. Development of a highly sensitive and robust Cor a 9 specific enzyme-linked immunosorbent assay for the detection of hazelnut traces. Anal Chim Acta. 2011;708:116–22. https://doi.org/10.1016/j.aca.2011.09.036.

    Article  CAS  PubMed  Google Scholar 

  34. Anfossi L, Calderara M, Baggiani C, Giovannoli C, Arletti E, Giraudi G. Development and application of a quantitative lateral flow immunoassay for fumonisins in maize. Anal Chim Acta. 2010;682:104–9. https://doi.org/10.1016/j.aca.2010.09.045.

    Article  CAS  PubMed  Google Scholar 

  35. Jiang H, Li X, Xiong Y, Pei K, Nie L, Xiong Y. Silver nanoparticle-based fluorescence-quenching lateral flow immunoassay for sensitive detection of ochratoxin a in grape juice and wine. Toxins. 2017;9:83. https://doi.org/10.3390/toxins9030083.

    Article  CAS  PubMed Central  Google Scholar 

  36. Oliver C. Conjugation of colloidal gold to proteins. Methods Mol Biol. 2010;588:369–73. https://doi.org/10.1007/978-1-59745-324-0_39.

    Article  CAS  PubMed  Google Scholar 

  37. Vashist SK, Luong JHT. Bioanalytical requirements and regulatory guidelines for immunoassays, in handbook of immunoassay technologies, Vashist SK, Luong JHT eds. Academic Press 2018.

  38. Croote D, Quake SR. Food allergen detection by mass spectrometry: the role of systems biology. NPJ Syst Biol Appl. 2016;2:16022. https://doi.org/10.1038/npjsba.2016.22.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Ben Rejeb S, Abbott M, Davies D, Cléroux C, Delahaut P. Multi-allergen screening immunoassay for the detection of protein markers of peanut and four tree nuts in chocolate. Food Add Contam. 2005;22:709–15.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Anfossi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Published in the topical collection Nanoparticles for Bioanalysis with guest editors María Carmen Blanco-López and Montserrat Rivas

Electronic supplementary material

ESM 1

(PDF 1047 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anfossi, L., Di Nardo, F., Russo, A. et al. Silver and gold nanoparticles as multi-chromatic lateral flow assay probes for the detection of food allergens. Anal Bioanal Chem 411, 1905–1913 (2019). https://doi.org/10.1007/s00216-018-1451-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-018-1451-6

Keywords

Navigation