Analytical and Bioanalytical Chemistry

, Volume 411, Issue 2, pp 367–385 | Cite as

Comprehensive analysis of oxylipins in human plasma using reversed-phase liquid chromatography-triple quadrupole mass spectrometry with heatmap-assisted selection of transitions

  • Guan-yuan Chen
  • Qibin ZhangEmail author
Research Paper


Oxylipins, a subclass of lipid mediators, are metabolites of various polyunsaturated fatty acids with crucial functions in regulation of systemic inflammation. Elucidation of their roles in pathological conditions requires accurate quantification of their levels in biological samples. We refined an ultra-performance liquid chromatography-multiple reaction monitoring-mass spectrometry (UPLC-MRM-MS)-based workflow for comprehensive and specific quantification of 131 endogenous oxylipins in human plasma, in which we optimized LC mobile phase additives, column, and gradient conditions. We employed heatmap-assisted strategy to identify unique transitions to improve the assay selectivity and optimized solid phase extraction procedures to achieve better analyte recovery. The method was validated according to FDA guidelines. Overall, 94.4% and 95.7% of analytes at tested concentrations were within acceptable accuracy (80–120%) and precision (CV < 15%), respectively. Good linearity for most analytes was obtained with R2 > 0.99. The method was also validated using a standard reference material—SRM 1950 frozen human plasma to demonstrate inter-lab compatibility.

Graphical abstract


Oxylipins Lipid mediators LC-MRM-MS Heatmap Human plasma SRM 1950 


Funding information

This work was partially supported by the American Heart Association (Grant 17CSA33570025) and the National Institute of Diabetes and Digestive and Kidney Diseases of the National Institutes of Health (Grant R01 DK116731).

Compliance with ethical standards

Deidentified, commercial human plasma were used in this work. Research conducted with unidentified samples is not human subjects’ research and is not regulated by the Federal Policy for the Protection of Human Subjects (45 CFR Part 46).

Conflict of interest

The authors declare that they have no conflicts of interest.

Supplementary material

216_2018_1446_MOESM1_ESM.pdf (849 kb)
ESM 1 (PDF 848 kb)


  1. 1.
    Murakami M. Lipid mediators in life science. Exp Anim. 2011;60(1):7–20.CrossRefGoogle Scholar
  2. 2.
    Burke JE, Dennis EA. Phospholipase A2 structure/function, mechanism, and signaling. J Lipid Res. 2009;50(Suppl):S237–42.CrossRefGoogle Scholar
  3. 3.
    Dennis EA, Norris PC. Eicosanoid storm in infection and inflammation. Nat Rev Immunol. 2015;15(8):511–23.CrossRefGoogle Scholar
  4. 4.
    Nieman DC, Meaney MP, John CS, Knagge KJ, Chen H. 9- and 13-hydroxy-octadecadienoic acids (9+13 HODE) are inversely related to granulocyte colony stimulating factor and IL-6 in runners after 2h running. Brain Behav Immun. 2016;56:246–52.CrossRefGoogle Scholar
  5. 5.
    Caligiuri SPB, Parikh M, Stamenkovic A, Pierce GN, Aukema HM. Dietary modulation of oxylipins in cardiovascular disease and aging. Am J Physiol Heart Circ Physiol. 2017;313(5):H903–18.CrossRefGoogle Scholar
  6. 6.
    Hanif A, Edin ML, Zeldin DC, Morisseau C, Falck JR, Nayeem MA. Vascular endothelial overexpression of human CYP2J2 (Tie2-CYP2J2 Tr) modulates cardiac oxylipin profiles and enhances coronary reactive hyperemia in mice. PLoS One. 2017;12(3):e0174137.CrossRefGoogle Scholar
  7. 7.
    Yeung J, Tourdot BE, Adili R, Green AR, Freedman CJ, Fernandez-Perez P, et al. 12(S)-HETrE, a 12-lipoxygenase oxylipin of dihomo-gamma-linolenic acid, inhibits thrombosis via Galphas signaling in platelets. Arterioscler Thromb Vasc Biol. 2016;36(10):2068–77.CrossRefGoogle Scholar
  8. 8.
    Sun Y, Koh HW, Choi H, Koh WP, Yuan JM, Newman JW, et al. Plasma fatty acids, oxylipins, and risk of myocardial infarction: the Singapore Chinese Health Study. J Lipid Res. 2016;57(7):1300–7.CrossRefGoogle Scholar
  9. 9.
    Tessaro FH, Ayala TS, Martins JO. Lipid mediators are critical in resolving inflammation: a review of the emerging roles of eicosanoids in diabetes mellitus. Biomed Res Int. 2015;2015:568408.CrossRefGoogle Scholar
  10. 10.
    Tourdot BE, Ahmed I, Holinstat M. The emerging role of oxylipins in thrombosis and diabetes. Front Pharmacol. 2014;4:176.CrossRefGoogle Scholar
  11. 11.
    Hellmann J, Tang Y, Spite M. Proresolving lipid mediators and diabetic wound healing. Curr Opin Endocrinol Diabetes Obes. 2012;19(2):104–8.CrossRefGoogle Scholar
  12. 12.
    Medeiros R, Kitazawa M, Passos GF, Baglietto-Vargas D, Cheng D, Cribbs DH, et al. Aspirin-triggered lipoxin A4 stimulates alternative activation of microglia and reduces Alzheimer disease-like pathology in mice. Am J Pathol. 2013;182(5):1780–9.CrossRefGoogle Scholar
  13. 13.
    Palacios-Pelaez R, Lukiw WJ, Bazan NG. Omega-3 essential fatty acids modulate initiation and progression of neurodegenerative disease. Mol Neurobiol. 2010;41(2–3):367–74.CrossRefGoogle Scholar
  14. 14.
    Montgomery CL, Keereetaweep J, Johnson HM, Grillo SL, Chapman KD, Koulen P. Changes in retinal N-acylethanolamines and their oxylipin derivatives during the development of visual impairment in a mouse model for glaucoma. Lipids. 2016;51(7):857–66.CrossRefGoogle Scholar
  15. 15.
    Greenhough A, Smartt HJ, Moore AE, Roberts HR, Williams AC, Paraskeva C, et al. The COX-2/PGE2 pathway: key roles in the hallmarks of cancer and adaptation to the tumour microenvironment. Carcinogenesis. 2009;30(3):377–86.CrossRefGoogle Scholar
  16. 16.
    Chen EP, Smyth EM. COX-2 and PGE2-dependent immunomodulation in breast cancer. Prostaglandins Other Lipid Mediat. 2011;96(1–4):14–20.CrossRefGoogle Scholar
  17. 17.
    Yang J, Schmelzer K, Georgi K, Hammock BD. Quantitative profiling method for oxylipin metabolome by liquid chromatography electrospray ionization tandem mass spectrometry. Anal Chem. 2009;81(19):8085–93.CrossRefGoogle Scholar
  18. 18.
    Masoodi M, Eiden M, Koulman A, Spaner D, Volmer DA. Comprehensive lipidomics analysis of bioactive lipids in complex regulatory networks. Anal Chem. 2010;82(19):8176–85.CrossRefGoogle Scholar
  19. 19.
    Blewett AJ, Varma D, Gilles T, Libonati JR, Jansen SA. Development and validation of a high-performance liquid chromatography-electrospray mass spectrometry method for the simultaneous determination of 23 eicosanoids. J Pharm Biomed Anal. 2008;46(4):653–62.CrossRefGoogle Scholar
  20. 20.
    Shinde DD, Kim KB, Oh KS, Abdalla N, Liu KH, Bae SK, et al. LC-MS/MS for the simultaneous analysis of arachidonic acid and 32 related metabolites in human plasma: basal plasma concentrations and aspirin-induced changes of eicosanoids. J Chromatogr B Anal Technol Biomed Life Sci. 2012;911:113–21.CrossRefGoogle Scholar
  21. 21.
    Wang Y, Armando AM, Quehenberger O, Yan C, Dennis EA. Comprehensive ultra-performance liquid chromatographic separation and mass spectrometric analysis of eicosanoid metabolites in human samples. J Chromatogr A. 2014;1359:60–9.CrossRefGoogle Scholar
  22. 22.
    Edpuganti V, Mehvar R. UHPLC-MS/MS analysis of arachidonic acid and 10 of its major cytochrome P450 metabolites as free acids in rat livers: effects of hepatic ischemia. J Chromatogr B Anal Technol Biomed Life Sci. 2014;964:153–63.CrossRefGoogle Scholar
  23. 23.
    Willenberg I, Ostermann AI, Schebb NH. Targeted metabolomics of the arachidonic acid cascade: current state and challenges of LC-MS analysis of oxylipins. Anal Bioanal Chem. 2015;407(10):2675–83.CrossRefGoogle Scholar
  24. 24.
    Yang Y, Zhong Q, Mo C, Zhang H, Zhou T, Tan W. Determination of endogenous inflammation-related lipid mediators in ischemic stroke rats using background subtracting calibration curves by liquid chromatography-tandem mass spectrometry. Anal Bioanal Chem. 2017;409(28):6537–47.CrossRefGoogle Scholar
  25. 25.
    Bowden JA, Heckert A, Ulmer CZ, Jones CM, Koelmel JP, Abdullah L, et al. Harmonizing lipidomics: NIST interlaboratory comparison exercise for lipidomics using SRM 1950-metabolites in frozen human plasma. J Lipid Res. 2017;58(12):2275–88.CrossRefGoogle Scholar
  26. 26.
    Ostermann AI, Willenberg I, Schebb NH. Comparison of sample preparation methods for the quantitative analysis of eicosanoids and other oxylipins in plasma by means of LC-MS/MS. Anal Bioanal Chem. 2015;407(5):1403–14.CrossRefGoogle Scholar
  27. 27.
    U.S. Department of Health and Human Services FDA (2013) Guidance for industry: bioanalytical method validationGoogle Scholar
  28. 28.
    Ulmer CZ, Ragland JM, Koelmel JP, Heckert A, Jones CM, Garrett TJ, et al. LipidQC: method validation tool for visual comparison to SRM 1950 using NIST interlaboratory comparison exercise lipid consensus mean estimate values. Anal Chem. 2017;89(24):13069–73.CrossRefGoogle Scholar
  29. 29.
    Liigand J, Kruve A, Leito I, Girod M, Antoine R. Effect of mobile phase on electrospray ionization efficiency. J Am Soc Mass Spectrom. 2014;25(11):1853–61.CrossRefGoogle Scholar
  30. 30.
    Strassburg K, Huijbrechts AM, Kortekaas KA, Lindeman JH, Pedersen TL, Dane A, et al. Quantitative profiling of oxylipins through comprehensive LC-MS/MS analysis: application in cardiac surgery. Anal Bioanal Chem. 2012;404(5):1413–26.CrossRefGoogle Scholar
  31. 31.
    Le Faouder P, Baillif V, Spreadbury I, Motta JP, Rousset P, Chene G, et al. LC-MS/MS method for rapid and concomitant quantification of pro-inflammatory and pro-resolving polyunsaturated fatty acid metabolites. J Chromatogr B Anal Technol Biomed Life Sci. 2013;932:123–33.CrossRefGoogle Scholar
  32. 32.
    Narvaez-Rivas M, Zhang Q. Comprehensive untargeted lipidomic analysis using core-shell C30 particle column and high field orbitrap mass spectrometer. J Chromatogr A. 2016;1440:123–34.CrossRefGoogle Scholar
  33. 33.
    Narvaez-Rivas M, Vu N, Chen GY, Zhang Q. Off-line mixed-mode liquid chromatography coupled with reversed phase high performance liquid chromatography-high resolution mass spectrometry to improve coverage in lipidomics analysis. Anal Chim Acta. 2017;954:140–50.CrossRefGoogle Scholar
  34. 34.
    Dolan JW. Temperature selectivity in reversed-phase high performance liquid chromatography. J Chromatogr A. 2002;965(1–2):195–205.CrossRefGoogle Scholar
  35. 35.
    Cui L, Isbell MA, Chawengsub Y, Falck JR, Campbell WB, Nithipatikom K. Structural characterization of monohydroxyeicosatetraenoic acids and dihydroxy- and trihydroxyeicosatrienoic acids by ESI-FTICR. J Am Soc Mass Spectrom. 2008;19(4):569–85.CrossRefGoogle Scholar
  36. 36.
    Chappell GP, Xiao X, Pica-Mendez A, Varnell T, Green S, Tanaka WK, et al. Quantitative measurement of cysteinyl leukotrienes and leukotriene B(4) in human sputum using ultra high pressure liquid chromatography-tandem mass spectrometry. J Chromatogr B Anal Technol Biomed Life Sci. 2011;879(3–4):277–84.CrossRefGoogle Scholar
  37. 37.
    Yasumoto A, Tokuoka SM, Kita Y, Shimizu T, Yatomi Y. Multiplex quantitative analysis of eicosanoid mediators in human plasma and serum: possible introduction into clinical testing. J Chromatogr B Anal Technol Biomed Life Sci. 2017;1068-1069:98–104.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Center for Translational Biomedical ResearchUniversity of North Carolina at GreensboroKannapolisUSA
  2. 2.Department of Chemistry and BiochemistryUniversity of North Carolina at GreensboroGreensboroUSA

Personalised recommendations