Analytical and Bioanalytical Chemistry

, Volume 411, Issue 2, pp 387–393 | Cite as

Cucurbit[8]uril-assisted peptide assembly for feasible electrochemical assay of histone acetyltransferase activity

  • Xiangyang Miao
  • Yang Wang
  • Zhun Gu
  • Dongsheng Mao
  • Limin NingEmail author
  • Ya CaoEmail author
Research Paper


Accumulating findings demonstrate the importance of histone acetyltransferases (HATs) in regulating the acetylation of histones and reveal that their aberrant catalytic activities are involved in the occurrence and progress of numerous diseases. Herein, a feasible electrochemical method is proposed to assay the activity of HAT. The critical elements of the assay method are the hindrance of HAT-catalyzed acetylation against carboxypeptidase Y-catalyzed digestion and cucurbit[8]uril-assisted peptide assembly, which may recruit peptide-templated silver nanoparticles onto the electrode surface, producing significant electrochemical signals. Taking p300 as a model HAT, the assay method is validated to exhibit desirable selectivity, reproducibility, and usability in inhibitor analysis, and allow absolute activity determination in a linear range from 0.1 to 50 nM with a detection limit of 0.055 nM, which is lower than those of previous reports. Therefore, this work may provide an effective tool for HAT activity assay, which will be of great potential in HAT-related fundamental research, disease diagnosis, and drug development in the future.

Graphical abstract


Histone acetyltransferase p300 Cucurbit[8]uril Peptide assembly Peptide-templated silver nanoparticles Electrochemical assay 



This work was supported by the National Natural Science Foundation of China (Grant No. 81503463), the Science and Technology Planning Project of Taicang (TC2018JC04) and the Natural Science Research Projects of Universities in Jiangsu Province (Project No. 16KJB430037).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

216_2018_1445_MOESM1_ESM.pdf (240 kb)
ESM 1 (PDF 240 kb)


  1. 1.
    Dekker FJ, Haisma HJ. Histone acetyl transferases as emerging drug targets. Drug Discov Today. 2009;14:942–8.CrossRefGoogle Scholar
  2. 2.
    Legube G, Trouche D. Regulating histone acetyltransferases and deacetylases. EMBO Rep. 2003;4:944–7.CrossRefGoogle Scholar
  3. 3.
    Dekker FJ, van den Bosch T, Martin NI. Small molecule inhibitors of histone acetyltransferases and deacetylases are potential drugs for inflammatory diseases. Drug Discov Today. 2014;19:654–60.CrossRefGoogle Scholar
  4. 4.
    Ma F, Zhang CY. Histone modifying enzymes: novel disease biomarkers and assay development. Expert Rev Mol Diagn. 2016;16:297–306.CrossRefGoogle Scholar
  5. 5.
    Zhang K, Dent SY. Histone modifying enzymes and cancer: going beyond histones. J Cell Biochem. 2005;96:1137–48.CrossRefGoogle Scholar
  6. 6.
    Ghadiali JE, Lowe SB, Stevens MM. Quantum-dot-based FRET detection of histone acetyltransferase activity. Angew Chem Int Ed. 2011;50:3417–20.CrossRefGoogle Scholar
  7. 7.
    Han Y, Li P, Xu Y, Li H, Song Z, Nie Z, et al. Fluorescent nanosensor for probing histone acetyltransferase activity based on acetylation protection and magnetic graphitic nanocapsules. Small. 2015;11:877–85.CrossRefGoogle Scholar
  8. 8.
    Chen S, Li Y, Hu Y, Han Y, Huang Y, Nie Z, et al. Nucleic acid-mimicking coordination polymer for label-free fluorescent activity assay of histone acetyltransferases. Chem Commun. 2015;51:4469–72.CrossRefGoogle Scholar
  9. 9.
    He M, Han Z, Qiao J, Ngo L, Xiong M, Zheng Y. A bioorthogonal turn-on fluorescent strategy for the detection of lysine acetyltransferase activity. Chem Commun. 2018;54:5594–7.CrossRefGoogle Scholar
  10. 10.
    He M, Han Z, Liu L, Zheng YG. Chemical biology approaches for investigating the functions of lysine acetyltransferases. Angew Chem Int Ed. 2018;57:1162–84.CrossRefGoogle Scholar
  11. 11.
    Felix FS, Angnes L. Electrochemical immunosensors - a powerful tool for analytical applications. Biosens Bioelectron. 2018;102:470–8.CrossRefGoogle Scholar
  12. 12.
    Shumyantseva VV, Suprun EV, Bulko TV, Archakov AI. Electrochemical methods for detection of post-translational modifications of proteins. Biosens Bioelectron. 2014;61:131–9.CrossRefGoogle Scholar
  13. 13.
    Liu T, Yin J, Wang Y, Miao P. Construction of a specific binding peptide based electrochemical approach for sensitive detection of Zn2+. J Electroanal Chem. 2016;783:304–7.CrossRefGoogle Scholar
  14. 14.
    Jiang Y, Chen XF, Lan LT, Pan Y, Zhu GX, Miao P. Gly–Gly–His tripeptide- and silver nanoparticle-assisted electrochemical evaluation of copper(II) ions in aqueous environment. New J Chem. 2018;42:14733–7.CrossRefGoogle Scholar
  15. 15.
    Li H, Huang Y, Yu Y, Li TQ, Li GX, Anzai J. Enzymatically regulated peptide pairing and catalysis for the bioanalysis of extracellular prometastatic activities of functionally linked enzymes. Sci Rep. 2016;6:25362.CrossRefGoogle Scholar
  16. 16.
    Feng Z, Wang H, Zhou R, Li J, Xu B. Enzyme-instructed assembly and disassembly processes for targeting downregulation in cancer cells. J Am Chem Soc. 2017;139:3950–3.CrossRefGoogle Scholar
  17. 17.
    De Sandis E, Ryadnov MG. Peptide self-assembly for nanomaterials: the old new kid on the block. Chem Soc Rev. 2015;44:8288–300.CrossRefGoogle Scholar
  18. 18.
    Burgess NC, Sharp TH, Thomas F, Wood CW, Thomson AR, Zaccai NR, et al. Modular design of self-assembling peptide-based nanotubes. J Am Chem Soc. 2015;137:10554–62.CrossRefGoogle Scholar
  19. 19.
    Moitra P, Kumar K, Kondaiah P, Bhattacharya S. Efficacious anticancer drug delivery mediated by a pH-sensitive self-assembly of a conserved tripeptide derived from tyrosine kinase NGF receptor. Angew Chem Int Ed. 2014;53:1113–7.CrossRefGoogle Scholar
  20. 20.
    Liu K, Xing RR, Zou QL, Ma GH, Mohwald H, Yan XH. Simple peptide-tuned self-assembly of photosensitizers towards anticancer photodynamic therapy. Angew Chem Int Ed. 2016;55:3036–9.CrossRefGoogle Scholar
  21. 21.
    Feng Y, Wang H, Zhang J, Song Y, Meng M, Mi J, et al. Bioinspired synthesis of Au nanostructures templated from amyloid β peptide assembly with enhanced catalytic activity. Biomacromolecules. 2018;19:2432–42.CrossRefGoogle Scholar
  22. 22.
    Wu J, Zou R, Wang Q, Xue Y, Wei P, Yang S, et al. A peptide probe for the detection of neurokinin-1 receptor by disaggregation enhanced fluorescence and magnetic resonance signals. Sci Rep. 2014;4:6487.CrossRefGoogle Scholar
  23. 23.
    Reches M, Gazit E. Casting metal nanowires within discrete self-assembled peptide nanotubes. Science. 2003;300:625–7.CrossRefGoogle Scholar
  24. 24.
    Yan XH, Zhu P, Li JB. Self-assembly and application of diphenylalanine-based nanostructures. Chem Soc Rev. 2010;39:1877–90.CrossRefGoogle Scholar
  25. 25.
    Zhao J, Tang Y, Cao Y, Chen T, Chen X, Mao X, et al. Amplified electrochemical detection of surface biomarker in breast cancer stem cell using self-assembled supramolecular nanocomposites. Electrochim Acta. 2018;283:1072–8.CrossRefGoogle Scholar
  26. 26.
    Soum C, Rubio-Albenque S, Fery-Forgues S, Deleris G, Alouini MA, Berthelot T. Supramolecular peptide/surface assembly for monitoring proteinase activity and cancer diagnosis. ACS Appl Mater Interfaces. 2015;7:16967–75.CrossRefGoogle Scholar
  27. 27.
    Chu CW, Ravoo BJ. Hierarchical supramolecular hydrogels: self-assembly by peptides and photo-controlled release via host–guest interaction. Chem Commun. 2017;53:12450–3.CrossRefGoogle Scholar
  28. 28.
    Xue S, Tan C, Chen M, Cao J, Zhang J, Zhang D, et al. Tumor-targeted supramolecular nanoparticles self-assembled from a ruthenium-β-cyclodextrin complex and an adamantane-functionalized peptide. Chem Commun. 2017;53:842–5.CrossRefGoogle Scholar
  29. 29.
    Mao X, Li Y, Han P, Wang X, Yang S, Zhang F, et al. One-pot and one-step colorimetric detection of aminopeptidase N activity based on gold nanoparticles-based supramolecular structure. Sens Actuat B Chem. 2018;267:336–41.CrossRefGoogle Scholar
  30. 30.
    Yan G, Eller MS, Elm C, Larocca CA, Ryu B, Panova IP, et al. Selective inhibition of p300 HAT blocks cell cycle progression, induces cellular senescence, and inhibits the DNA damage response in melanoma cells. J Invest Dermatol. 2013;133:2444–52.CrossRefGoogle Scholar
  31. 31.
    Miao XY, Yu HZ, Gu Z, Yang LL, Teng JH, Cao Y, et al. Peptide self-assembly assisted signal labeling for an electrochemical assay of protease activity. Anal Bioanal Chem. 2017;409:6723–30.CrossRefGoogle Scholar
  32. 32.
    Hu Y, Chen S, Han Y, Chen H, Wang Q, Nie Z, et al. Unique electrocatalytic activity of a nucleic acid-mimicking coordination polymer for the sensitive detection of coenzyme A and histone acetyltransferase activity. Chem Commun. 2015;51:17611–4.CrossRefGoogle Scholar
  33. 33.
    Clements A, Poux AN, Lo WS, Pillus L, Berger SL, Marmorstein R. Structural basis for histone and phosphohistone binding by the GCN5 histone acetyltransferase. Mol Cell. 2003;12:461–73.CrossRefGoogle Scholar
  34. 34.
    Han Z, Chou CW, Yang X, Bartlett MG, Zheng YG. Profiling cellular substrates of lysine acetyltransferases GCN5 and p300 with orthogonal labeling and click chemistry. ACS Chem Biol. 2017;12:1547–55.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Medical Science and TechnologySuzhou Chien-shiung Institute of TechnologyTaicangChina
  2. 2.College of Medicine and Life SciencesNanjing University of Chinese MedicineNanjingChina
  3. 3.Center for Molecular Recognition and Biosensing, School of Life SciencesShanghai UniversityShanghaiChina

Personalised recommendations