Advertisement

3D printed microfluidic devices with immunoaffinity monoliths for extraction of preterm birth biomarkers

  • Ellen K. Parker
  • Anna V. Nielsen
  • Michael J. Beauchamp
  • Haifa M. Almughamsi
  • Jacob B. Nielsen
  • Mukul Sonker
  • Hua Gong
  • Gregory P. Nordin
  • Adam T. WoolleyEmail author
Research Paper
  • 174 Downloads
Part of the following topical collections:
  1. Ultrasmall Sample Biochemical Analysis

Abstract

Preterm birth (PTB) is defined as birth before the 37th week of pregnancy and results in 15 million early deliveries worldwide every year. Presently, there is no clinical test to determine PTB risk; however, a panel of nine biomarkers found in maternal blood serum has predictive power for a subsequent PTB. A significant step in creating a clinical diagnostic for PTB is designing an automated method to extract and purify these biomarkers from blood serum. Here, microfluidic devices with 45 μm × 50 μm cross-section channels were 3D printed with a built-in polymerization window to allow a glycidyl methacrylate monolith to be site-specifically polymerized within the channel. This monolith was then used as a solid support to attach antibodies for PTB biomarker extraction. Using these functionalized monoliths, it was possible to selectively extract a PTB biomarker, ferritin, from buffer and a human blood serum matrix. This is the first demonstration of monolith formation in a 3D printed microfluidic device for immunoaffinity extraction. Notably, this work is a crucial first step toward developing a 3D printed microfluidic clinical diagnostic for PTB risk.

Keywords

3D printing Integrated microfluidics Monoliths Point-of-care Sample preparation Sample purification 

Notes

Funding information

The authors acknowledge support from the National Institutes of Health (R01 EB006124 and R15 GM123405-01A1). A.V.N. and M.J.B. thank the BYU Department of Chemistry and Biochemistry for financial support from a Roland K. Robins Fellowship, and H.M.A acknowledges Taif University for financial support.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

Research involving human participants

Human blood serum samples were obtained from commercial sources; human subjects work has been approved under IRB no. E18401.

Supplementary material

216_2018_1440_MOESM1_ESM.pdf (3.9 mb)
ESM 1 (PDF 4001 kb)

References

  1. 1.
    World Health Organization. Preterm birth. In: Fact sheets. WHO. 2018. http://www.who.int/mediacentre/factsheets/fs363/en/. Accessed 3 Jul 2018.
  2. 2.
    Centers for Disease Control and Prevention. Preterm birth. In: Maternal and infant health. CDC. 2018. https://www.cdc.gov/reproductivehealth/maternalinfanthealth/pretermbirth.htm. Accessed 3 Jul 2018.
  3. 3.
    Behrman RE, Butler AS. Preterm birth: causes, consequences, and prevention. Washington DC: National Academies Press; 2007.Google Scholar
  4. 4.
    Blencowe H, Cousens S, Oestergaard MZ, Chou D, Moller AB, Narwal R, et al. National, regional, and worldwide estimates of preterm birth rates in the year 2010 with time trends since 1990 for selected countries: a systematic analysis and implications. Lancet. 2012;379:2162–72.CrossRefGoogle Scholar
  5. 5.
    Roberto R, Sudhansu KD, Susan JF. Preterm labor: one syndrome, many causes. Science. 2014;345:760–5.CrossRefGoogle Scholar
  6. 6.
    Esplin MS, Merrell K, Goldenberg R, Lai Y, Iams JD, Mercer B, et al. Proteomic identification of serum peptides predicting subsequent spontaneous preterm birth. Am J Obstet Gynecol. 2011;204:391.e8.CrossRefGoogle Scholar
  7. 7.
    Sahore V, Sonker M, Nielsen AV, Knob R, Kumar S, Woolley AT. Automated microfluidic devices integrating solid-phase extraction, fluorescent labeling, and microchip electrophoresis for preterm birth biomarker analysis. Anal Bioanal Chem. 2018;410:933–41.CrossRefGoogle Scholar
  8. 8.
    Sonker M, Parker EK, Nielsen AV, Sahore V, Woolley AT. Electrokinetically operated microfluidic devices for integrated immunoaffinity monolith extraction and electrophoretic separation of preterm birth biomarkers. Analyst. 2018;143:224–31.CrossRefGoogle Scholar
  9. 9.
    Nielsen AV, Nielsen JB, Sonker M, Knob R, Sahore V, Woolley AT. Microchip electrophoresis separation of a panel of preterm birth biomarkers. Electrophoresis. 2018;39:2300–7.CrossRefGoogle Scholar
  10. 10.
    Chin CD, Linder V, Sia SK. Commercialization of microfluidic point-of-care diagnostic devices. Lab Chip. 2012;13:2118–34.CrossRefGoogle Scholar
  11. 11.
    Sonker M, Sahore V, Woolley AT. Recent advances in microfluidic sample preparation and separation techniques for molecular biomarker analysis: a critical review. Anal Chim Acta. 2017;986:1–11.CrossRefGoogle Scholar
  12. 12.
    Núñez O, Nakanishi K, Tanaka N. Preparation of monolithic silica columns for high-performance liquid chromatography. J Chromatogr A. 2008;1191:231–52.CrossRefGoogle Scholar
  13. 13.
    Knob R, Sahore V, Sonker M, Woolley AT. Advances in monoliths and related porous materials for microfluidics. Biomicrofluidics. 2016;10:032901–19.CrossRefGoogle Scholar
  14. 14.
    Andjelković U, Tufegdžić S, Popović M. Use of monolithic supports for high-throughput protein and peptide separation in proteomics. Electrophoresis. 2017;38:2851–69.CrossRefGoogle Scholar
  15. 15.
    Svec F, Lv Y. Advances and recent trends in the field of monolithic columns for chromatography. Anal Chem. 2015;87:250–73.CrossRefGoogle Scholar
  16. 16.
    Tetala KKR, Vijayalakshmi MA. A review on recent developments for biomolecule separation at analytical scale using microfluidic devices. Anal Chim Acta. 2016;906:7–21.CrossRefGoogle Scholar
  17. 17.
    Buchmeiser MR. Polymeric monolithic materials: syntheses, properties, functionalization and applications. Polymer. 2007;48:2187–98.CrossRefGoogle Scholar
  18. 18.
    Masini JC, Svec F. Porous monoliths for on-line sample preparation: a review. Anal Chim Acta. 2017;964:24–44.CrossRefGoogle Scholar
  19. 19.
    Yang W, Sun X, Wang HY, Woolley AT. Integrated microfluidic device for serum biomarker quantitation using standard addition or a calibration curve. Anal Chem. 2009;81:8230–5.CrossRefGoogle Scholar
  20. 20.
    Yang W, Yu M, Sun X, Woolley AT. Microdevices integrating affinity columns and capillary electrophoresis for multibiomarker analysis in human serum. Lab Chip. 2010;10:2527–33.CrossRefGoogle Scholar
  21. 21.
    Svec F. Porous polymer monoliths: amazingly wide variety of techniques enabling their preparation. J Chromatogr A. 2010;1217:902–24.CrossRefGoogle Scholar
  22. 22.
    Dziomba S, Araya-Farias M, Smadja C, Taverna M, Carbonnier B, Tran NT. Solid supports for extraction and preconcentration of proteins and peptides in microfluidic devices: a review. Anal Chim Acta. 2017;955:1–26.CrossRefGoogle Scholar
  23. 23.
    Pandey C, Augustine S, Kumar S, Kumar S, Nara S, Srivastave S, et al. Microfluidics based point-of-care diagnostics. Biotechnol J. 2018;13:1700047.CrossRefGoogle Scholar
  24. 24.
    Nge PN, Rogers CI, Woolley AT. Advances in microfluidic materials, functions, integration, and applications. Chem Rev. 2013;113:2550–83.CrossRefGoogle Scholar
  25. 25.
    Erickson D, Li D. Integrated microfluidic devices. Anal Chim Acta. 2004;507:11–26.CrossRefGoogle Scholar
  26. 26.
    Hu J, Cui X, Gong Y, Xu X, Gao B, Wen T, et al. Portable microfluidic and smartphone-based devices for monitoring of cardiovascular diseases at the point of care. Biotechnol Adv. 2016;34:305–20.CrossRefGoogle Scholar
  27. 27.
    Yazdi AA, Popma A, Wong W, Nguyen T, Pan Y, Xu J. 3D printing: an emerging tool for novel microfluidics and lab-on-a-chip applications. Microfluid Nanofluid. 2016;20:50.CrossRefGoogle Scholar
  28. 28.
    Berman B. 3-D printing: the new industrial revolution. Bus Horiz. 2012;55:155–62.CrossRefGoogle Scholar
  29. 29.
    Stansbury JW, Idacavage MJ. 3D printing with polymers: challenges among expanding options and opportunities. Dent Mater. 2016;32:54–64.CrossRefGoogle Scholar
  30. 30.
    Beauchamp MJ, Nordin GP, Woolley AT. Moving from millifluidic to truly microfluidic sub-100-μm cross-section 3D printed devices. Anal Bioanal Chem. 2017;409:4311–9.CrossRefGoogle Scholar
  31. 31.
    Shallan AI, Smejkal P, Corban M, Guijt RM, Breadmore MC. Cost-effective three-dimensional printing of visibly transparent microchips within minutes. Anal Chem. 2014;86:3124–30.CrossRefGoogle Scholar
  32. 32.
    Anciaux SK, Geiger M, Bowser MT. 3D printed micro free-flow electrophoresis device. Anal Chem. 2016;88:7675–82.CrossRefGoogle Scholar
  33. 33.
    Anderson KB, Lockwood SY, Martin RS, Spence DM. A 3D printed fluidic device that enables integrated features. Anal Chem. 2013;85:5622–6.CrossRefGoogle Scholar
  34. 34.
    Sochol RD, Sweet E, Glick CC, Venkatesh S, Avetisyan A, Ekman KG, et al. 3D printed microfluidic circuitry via multijet based additive manufacturing. Lab Chip. 2016;16:668–78.CrossRefGoogle Scholar
  35. 35.
    Lee KG, Park KJ, Seok S, Shin S, Kim DH, Park JY, et al. 3D printed modules for integrated microfluidic devices. RSC Adv. 2014;4:32876–80.CrossRefGoogle Scholar
  36. 36.
    Lee JM, Zhang M, Yeong WY. Characterization and evaluation of 3D printed microfluidic chip for cell processing. Microfluid Nanofluid. 2016;20:1–15.CrossRefGoogle Scholar
  37. 37.
    Gong H, Beauchamp M, Perry S, Woolley AT, Nordin GP. Optical approach to resin formulation for 3D printed microfluidics. RSC Adv. 2015;5:106621–32.CrossRefGoogle Scholar
  38. 38.
    Gong H, Bickham BP, Woolley AT, Nordin GP. Custom 3D printer and resin for 18 μm × 20 μm microfluidic flow channels. Lab Chip. 2017;17:2899–909.CrossRefGoogle Scholar
  39. 39.
    Beauchamp MJ, Gong H, Woolley AT, Nordin GP. 3D printed microfluidic features using dose control in X, Y, and Z dimensions. Micromachines. 2018;9:326-1-326-12.CrossRefGoogle Scholar
  40. 40.
    Sahore V, Kumar S, Rogers CI, Sonker M, Jensen JK, Woolley AT. Pressure-actuated microfluidic devices for electrophoretic separation of pre-term birth biomarkers. Anal Bioanal Chem. 2016;408:599–607.CrossRefGoogle Scholar
  41. 41.
    Gong H, Woolley AT, Nordin GP. 3D printed high density, reversible, chip-to-chip microfluidic interconnects. Lab Chip. 2018;18:639–47.CrossRefGoogle Scholar
  42. 42.
    Gong H, Woolley AT, Nordin GP. High density 3D printed microfluidic valves, pumps, and multiplexers. Lab Chip. 2016;16:2450–8.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Ellen K. Parker
    • 1
  • Anna V. Nielsen
    • 1
  • Michael J. Beauchamp
    • 1
  • Haifa M. Almughamsi
    • 1
  • Jacob B. Nielsen
    • 1
  • Mukul Sonker
    • 1
  • Hua Gong
    • 2
  • Gregory P. Nordin
    • 2
  • Adam T. Woolley
    • 1
    Email author
  1. 1.Department of Chemistry and Biochemistry, C100 BNSNBrigham Young UniversityProvoUSA
  2. 2.Department of Electrical and Computer Engineering, 450G EBBrigham Young UniversityProvoUSA

Personalised recommendations