Advertisement

An investigation into the kinematics of magnetically driven droplets on various (super)hydrophobic surfaces and their application to an automated multi-droplet platform

  • Prashant Agrawal
  • Kyle J. Bachus
  • Gabrielle Carriere
  • Phoenix Grouse
  • Richard D. Oleschuk
Research Paper
  • 86 Downloads
Part of the following topical collections:
  1. Ultrasmall Sample Biochemical Analysis

Abstract

Magnetic actuation on digital microfluidic (DMF) platforms may provide a low-cost, less cumbersome alternative for droplet manipulation in comparison to other techniques such as electrowetting-on-dielectric. Precise control of droplets in magnetically driven DMF platforms is achieved using a low-friction surface, magnetically susceptible material/droplet(s), and an applied magnetic field. Superhydrophobic (SH) surfaces offer limited friction for aqueous media as defined by their high water contact angles (WCA) (>150°) and low sliding angles (<10°). The low surface friction of such coatings and materials significantly reduces the force required for droplet transport. Here, we present a study that examines several actuation parameters including the effects of particle and particle-free actuation mechanisms, porous and non-porous SH materials, surface chemistry, droplet speed/acceleration, and the presence of surface energy traps (SETs) on droplet kinematics. Automated actuation was performed using an XY linear stepper gantry, which enabled sequential droplet actuation, mixing, and undocking operations to be performed in series. The results of this study are applied to a quantitative fluorescence-based DNA assay in under 2 min.

Graphical abstract

Keywords

Magnetic actuation Superhydrophobic Droplet DNA quantitation 

Notes

Acknowledgements

The authors would like to extend their gratitude to Dr. Guojun Liu’s research group at Queen’s University for assisting with contact angle measurements and NanoFabrication Kingston where the laser micromachining was performed. The authors would also like to acknowledge the funding bodies, namely CMC Microsystems for its microfabrication support, the Canadian Foundation for Innovation (emSYSCAN Project) for infrastructure (XY gantry), and Natural Sciences and Engineering Research Council for Discovery Grant Funding.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

216_2018_1378_MOESM1_ESM.pdf (369 kb)
ESM 1 (PDF 369 kb)
ESM 2

(MP4 15,390 kb)

ESM 3

(MP4 1529 kb)

ESM 4

(MP4 6781 kb)

ESM 5

(MP4 3255 kb)

References

  1. 1.
    Chu Z, Seeger S. Superamphiphobic surfaces. Chem Soc Rev. 2014;43(8):2784–98.  https://doi.org/10.1039/c3cs60415b.CrossRefPubMedGoogle Scholar
  2. 2.
    Barthlott W, Neinhuis C. Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta. 1997;202(1):1–8.  https://doi.org/10.1007/s004250050096.CrossRefGoogle Scholar
  3. 3.
    Golovin K, Boban M, Mabry JM, Tuteja A. Designing self-healing superhydrophobic surfaces with exceptional mechanical durability. ACS Appl Mater Interfaces. 2017;9(12):11212–23.  https://doi.org/10.1021/acsami.6b15491.CrossRefPubMedGoogle Scholar
  4. 4.
    Wang W, Lockwood K, Boyd LM, Davidson MD, Movafaghi S, Vahabi H, et al. Superhydrophobic coatings with edible materials. ACS Appl Mater Interfaces. 2016;8(29):18664–8.  https://doi.org/10.1021/acsami.6b06958.CrossRefPubMedGoogle Scholar
  5. 5.
    Han JT, Zheng Y, Cho JH, Xu X, Cho K. Stable superhydrophobic organic−inorganic hybrid films by electrostatic self-assembly. J Phys Chem B. 2005;109(44):20773–8.CrossRefGoogle Scholar
  6. 6.
    Zhao N, Shi F, Wang Z, Zhang X. Combining layer-by-layer assembly with electrodeposition of silver aggregates for fabricating superhydrophobic surfaces. Langmuir. 2005;21(10):4713–6.CrossRefGoogle Scholar
  7. 7.
    Han JT, Lee DH, Ryu CY, Cho K. Fabrication of superhydrophobic surface from a supramolecular organosilane with quadruple hydrogen bonding. J Am Chem Soc. 2004;126(15):4796–7.CrossRefGoogle Scholar
  8. 8.
    Sun M, Luo C, Xu L, Ji H, Ouyang Q, Yu D, et al. Artificial lotus leaf by nanocasting. Langmuir. 2005;21(19):8978–81.CrossRefGoogle Scholar
  9. 9.
    Lee W, Jin M-K, Yoo W-C, Lee J-K. Nanostructuring of a polymeric substrate with well-defined nanometer-scale topography and tailored surface wettability. Langmuir. 2004;20(18):7665–9.CrossRefGoogle Scholar
  10. 10.
    Auad P, Ueda E, Levkin PA. Facile and multiple replication of superhydrophilic–superhydrophobic patterns using adhesive tape. ACS Appl Mater Interfaces. 2013;5(16):8053–7.  https://doi.org/10.1021/am402135e.CrossRefPubMedGoogle Scholar
  11. 11.
    Ueda E, Levkin PA. Emerging applications of superhydrophilic-superhydrophobic micropatterns. Adv Mater. 2013;25(9):1234–47.  https://doi.org/10.1002/adma.201204120.CrossRefPubMedGoogle Scholar
  12. 12.
    Feng W, Li L, Ueda E, Li J, Heißler S, Welle A, et al. Surface patterning via thiol-yne click chemistry: an extremely fast and versatile approach to superhydrophilic-superhydrophobic micropatterns. Adv Mater Interfaces. 2014;1(7):1400269.  https://doi.org/10.1002/admi.201400269.CrossRefGoogle Scholar
  13. 13.
    Levkin PA, Svec F, Frechet JMJ. Porous polymer coatings: a versatile approach to superhydrophobic surfaces. Adv Funct Mater. 2009;19(12):1993–8.  https://doi.org/10.1002/adfm.200801916.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Jebrail MJ, Wheeler AR. Let’s get digital: digitizing chemical biology with microfluidics. Curr Opin Chem Biol. 2010;14(5):574–81.  https://doi.org/10.1016/j.cbpa.2010.06.187.CrossRefPubMedGoogle Scholar
  15. 15.
    Hirai Y, Mayama H, Matsuo Y, Shimomura M. Uphill water transport on a wettability-patterned surface: experimental and theoretical results. ACS Appl Mater Interfaces. 2017;9(18):15814–21.  https://doi.org/10.1021/acsami.7b00806.CrossRefPubMedGoogle Scholar
  16. 16.
    Wang S, Liu K, Yao X, Jiang L. Bioinspired surfaces with super wettability: new insight on theory, design, and applications. Chem Rev. 2015;115(16):8230–93.  https://doi.org/10.1021/cr400083y.CrossRefPubMedGoogle Scholar
  17. 17.
    Tenjimbayashi M, Higashi M, Yamazaki T, Takenaka I, Matsubayashi T, Moriya T, et al. Droplet motion control on dynamically hydrophobic patterned surfaces as multifunctional liquid manipulators. ACS Appl Mater Interfaces. 2017;9(12):10371–7.  https://doi.org/10.1021/acsami.7b01641.CrossRefPubMedGoogle Scholar
  18. 18.
    Bachus K. Engineering patterned materials and microstructured fibers for microfluidics and analytical applications. PhD dissertation. Kigston: Queen’s University; 2017.Google Scholar
  19. 19.
    Bachus KJ, Mats L, Choi HW, Gibson GTT, Oleschuk RD. Fabrication of patterned superhydrophobic/hydrophilic substrates by laser micromachining for small volume deposition and droplet-based fluorescence. ACS Appl Mater Interfaces. 2017;9(8):7629–36.  https://doi.org/10.1021/acsami.6b16363.CrossRefPubMedGoogle Scholar
  20. 20.
    Sekula-Neuner S, de Freitas M, Tröster L-M, Jochum T, Levkin PA, Hirtz M, Fuchs H. Phospholipid arrays on porous polymer coatings generated by micro-contact spotting. Beilstein J Nanotechnol. 2017;8:715–22.CrossRefGoogle Scholar
  21. 21.
    Ueda E, Geyer FL, Nedashkivska V, Levkin PA. Droplet microarray: facile formation of arrays of microdroplets and hydrogel micropads for cell screening applications. Lab Chip. 2012;12(24):5218–24.  https://doi.org/10.1039/C2LC40921F.CrossRefPubMedGoogle Scholar
  22. 22.
    Sackmann EK, Fulton AL, Beebe DJ. The present and future role of microfluidics in biomedical research. Nature. 2014;507(7491):181–9.  https://doi.org/10.1038/nature13118.CrossRefPubMedGoogle Scholar
  23. 23.
    Decrop D, Pardon G, Brancato L, Kil D, Zandi Shafagh R, Kokalj T, et al. Single-step imprinting of femtoliter microwell arrays allows digital bioassays with attomolar limit of detection. ACS Appl Mater Interfaces. 2017;9(12):10418–26.  https://doi.org/10.1021/acsami.6b15415.CrossRefPubMedGoogle Scholar
  24. 24.
    Ng AHC, Choi K, Luoma RP, Robinson JM, Wheeler AR. Digital microfluidic magnetic separation for particle-based immunoassays. Anal Chem. 2012;84(20):8805–12.  https://doi.org/10.1021/ac3020627.CrossRefPubMedGoogle Scholar
  25. 25.
    Zhang Y, Nguyen N-T. Magnetic digital microfluidics - a review. Lab Chip. 2017;17(6):994–1008.  https://doi.org/10.1039/C7LC00025A.CrossRefPubMedGoogle Scholar
  26. 26.
    Mats L. Continuous and digital approaches to manipulation and detection of analytes on microfluidic devices. Queen’s University; 2016.Google Scholar
  27. 27.
    Mats L, Young R, Gibson GTT, Oleschuk RD. Magnetic droplet actuation on natural (Colocasia leaf) and fluorinated silica nanoparticle super hydrophobic surfaces. Sensors Actuators B Chem. 2015;220:5–12.  https://doi.org/10.1016/j.snb.2015.05.027.CrossRefGoogle Scholar
  28. 28.
    Nguyen NT, Zhu G, Chua YC, Phan VN, Tan SH. Magneto wetting and sliding motion of a sessile ferrofluid droplet in the presence of a permanent magnet. Langmuir. 2010;26(15):12553–9.  https://doi.org/10.1021/la101474e.CrossRefPubMedGoogle Scholar
  29. 29.
    Guo Z-G, Zhou F, Hao J-C, Liang Y-M, Liu W-M, Huck WTS. “Stick and slide” ferrofluidic droplets on superhydrophobic surfaces. Appl Phys Lett. 2006;89(8):081911.  https://doi.org/10.1063/1.2336729.CrossRefGoogle Scholar
  30. 30.
    Long Z, Shetty AM, Solomon MJ, Larson RG. Fundamentals of magnet-actuated droplet manipulation on an open hydrophobic surface. Lab Chip. 2009;9(11):1567–75.  https://doi.org/10.1039/b819818g.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Cesarone CF, Bolognesi C, Santi L. Improved microfluorometric DNA determination in biological material using 33258 Hoechst. Anal Biochem. 1979;100(1):188–97.  https://doi.org/10.1016/0003-2697(79)90131-3.CrossRefPubMedGoogle Scholar
  32. 32.
    Labarca C, Paigen K. A simple, rapid, and sensitive DNA assay procedure. Anal Biochem. 1980;102(2):344–52.  https://doi.org/10.1016/0003-2697(80)90165-7.CrossRefPubMedGoogle Scholar
  33. 33.
    Daxhelet GA, Coene MM, Hoet PP, Cocito CG. Spectrofluorometry of dyes with DNAs of different base composition and conformation. Anal Biochem. 1989;179(2):401–3.  https://doi.org/10.1016/0003-2697(89)90152-8.CrossRefPubMedGoogle Scholar
  34. 34.
    Moe D, Garbarsch C, Kirkeby S. The protein effect on determination of DNA with Hoechst 33258. J Biochem Biophys Methods. 1994;28(4):263–76.  https://doi.org/10.1016/0165-022X(94)90002-7.CrossRefPubMedGoogle Scholar
  35. 35.
    Stout D, Becker F. Fluorometric quantitation of single-stranded DNA: a method applicable to the technique of alkaline elution. Anal Biochem. 1982;127(2):302–7.CrossRefGoogle Scholar
  36. 36.
    Chen J, Ji X, He Z. High-throughput droplet analysis and multiplex DNA detection in the microfluidic platform equipped with a robust sample-introduction technique. Anal Chim Acta. 2015;888:110–7.  https://doi.org/10.1016/j.aca.2015.07.054.CrossRefPubMedGoogle Scholar
  37. 37.
    Svec F. Porous polymer monoliths: amazingly wide variety of techniques enabling their preparation. J Chromatogr A. 2010;1217(6):902–24.CrossRefGoogle Scholar
  38. 38.
    Bachus KJ, Langille KJ, Fu Y, Gibson GTT, Oleschuk RD. Controlling the morphology of (concentric) microtubes formed by in situ free radical polymerization. Polymer. 2015;58:113–20.  https://doi.org/10.1016/j.polymer.2014.12.040.CrossRefGoogle Scholar
  39. 39.
    Fu Y, Gibson GTT, Oleschuk RD. Polymer microstructures with high aspect ratio and low polydispersity using photonic fibres as templates. J Mater Chem. 2012;22(17):8208–14.  https://doi.org/10.1039/C2JM16752B.CrossRefGoogle Scholar
  40. 40.
    Egatz-Gómez A, Melle S, García AA, Lindsay SA, Márquez M, Domínguez-García P, et al. Discrete magnetic microfluidics. Appl Phys Lett. 2006;89(3):034106.  https://doi.org/10.1063/1.2227517.CrossRefGoogle Scholar
  41. 41.
    García AA, Egatz-Gómez A, Lindsay SA, Domínguez-García P, Melle S, Marquez M, et al. Magnetic movement of biological fluid droplets. J Magn Magn Mater. 2007;311(1):238–43.  https://doi.org/10.1016/j.jmmm.2006.10.1149.CrossRefGoogle Scholar
  42. 42.
    Hutama TJ, Oleschuk RD. Magnetically manipulated droplet splitting on a 3D-printed device to carry out a complexometric assay. Lab Chip. 2017;17(15):2640–9.  https://doi.org/10.1039/C7LC00629B.CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Prashant Agrawal
    • 1
  • Kyle J. Bachus
    • 1
  • Gabrielle Carriere
    • 1
  • Phoenix Grouse
    • 1
  • Richard D. Oleschuk
    • 1
  1. 1.Department of ChemistryQueen’s UniversityKingstonCanada

Personalised recommendations