Advertisement

Graphene quantum dots-based nano-biointerface platform for food toxin detection

  • Hema Bhardwaj
  • Chandan Singh
  • R. K. Kotnala
  • Gajjala Sumana
Research Paper
  • 14 Downloads

Abstract

Due to the similar electrochemical properties to graphene oxide (GO), graphene quantum dots (GQDs) are considered as a highly potential candidate for designing an electrochemical biosensor. In this report, GQDs were synthesized having an average diameter of 7 nm and utilized for the fabrication of an electrochemical immunosensor for the detection of food toxin, aflatoxin B1 (AFB1). An electrophoretic deposition technique was utilized to deposit the chemically synthesized GQDs onto indium tin oxide (ITO)-coated glass substrate. Further, the monoclonal antibodies of AFB1 were covalently immobilized onto deposited electrode GQDs/ITO using EDC-NHS as a crosslinker. The structural and morphological studies of GQDs and conjugated anti-AFB1 with GQDs have been investigated using UV-visible spectroscopy, photoluminescence spectroscopy, Raman spectroscopy, transmission electron microscopy, scanning electron microscopy techniques, etc. The electrochemical impedance spectroscopy and cyclic voltammetry measurements were carried out for electrical characterization and biosensing studies. This simple monodisperse GQDs-based platform yields heterogeneous electron transfer (97.63 × 10−5 cm s−1), the time constant (0.005 s) resulting in improved biosensing performance. The electrochemical immunosensor shows high sensitivity 213.88 Ω (ng mL−1)−1 cm−2. The limit of detection for standard samples and contaminated maize samples was found to be 0.03 ng mL−1 and 0.05 ng g−1, respectively, which is lower than the maximum acceptable limit according to the European Union. This result indicates its potential application for aflatoxin B1 detection in food contents.

Graphical abstract

Keywords

Graphene quantum dots Electrophoretic deposition Aflatoxin B1 Electrochemical immunosensor Impedance 

Notes

Acknowledgements

The authors are highly thankful to Director, CSIR-National Physical Laboratory, New Delhi, India, for providing the facilities. We thank Dr. A.M. Biradar for his support and encouragement. The authors are thankful to Prof. B. D. Malhotra, Delhi Technical University, for his guidance and useful discussions. H.B. acknowledges the Department of Science and Technology (DST) for financial support, Dr. Ritu Srivastava for PL studies, Mr. Manoj Kumar Pandey for technical help, and Mrs. Monika Kundu for providing infected maize samples. C.S. acknowledges CSIR (India), for the award of Senior Research Fellowship. Authors are also thankful to Mr. Dinesh Singh and Mr. K. N. Sood for TEM and SEM studies.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

216_2018_1341_MOESM1_ESM.pdf (537 kb)
ESM 1 (PDF 536 kb)

References

  1. 1.
    Conradt D, Schatzle MA, Haas J, Townsend CA, Muller M. New insights into the conversion of Versicolorin a in the biosynthesis of aflatoxin B1. J Am Chem Soc. 2015;137(34):10867–9.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Wang X, Niessner R, Tang D, Knopp D. Nanoparticle-based immunosensors and immunoassays for aflatoxins. Anal Chim Acta. 2016;912:10–23.CrossRefPubMedGoogle Scholar
  3. 3.
    Parkin DM, Bray F, Ferlay J, Pisani P. Estimating the world cancer burden: Globocan 2000. Int J Cancer. 2001;94(2):153–6.CrossRefGoogle Scholar
  4. 4.
    Van Egmond HP, Schothorst RC, Jonker MA. Regulations relating to mycotoxins in food. Anal Bioanal Chem. 2007;389(1):147–57.CrossRefPubMedGoogle Scholar
  5. 5.
    Ketney O, Santini A, Oancea S (2017) Recent aflatoxin survey data in milk and milk products: A review. Int J Dairy Technol.Google Scholar
  6. 6.
    Suzuki N, Wang Y, Elvati P, Qu Z-B, Kim K, Jiang S, et al. Chiral graphene quantum dots. ACS Nano. 2016;10(2):1744–55.CrossRefPubMedGoogle Scholar
  7. 7.
    Wang J. Nanomaterial-based electrochemical biosensors. Analyst. 2005;130(4):421–6.CrossRefPubMedGoogle Scholar
  8. 8.
    Shen J, Zhu Y, Yang X, Li C. Graphene quantum dots: emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices. Chem Commun. 2012;48(31):3686–99.CrossRefGoogle Scholar
  9. 9.
    Zhang P, Zhuo Y, Chang Y, Yuan R, Chai Y. Electrochemiluminescent graphene quantum dots as a sensing platform: a dual amplification for microRNA assay. Anal Chem. 2015;87(20):10385–91.CrossRefPubMedGoogle Scholar
  10. 10.
    Yang H, Liu W, Ma C, Zhang Y, Wang X, Yu J, et al. Gold-silver nanocomposite-functionalized graphene based electrochemiluminescence immunosensor using graphene quantum dots coated porous PtPd nanochains as labels. Electrochim Acta. 2014;123:470–6.CrossRefGoogle Scholar
  11. 11.
    Ren M, Xu H, Huang X, Kuang M, Xiong Y, Xu H, et al. Immunochromatographic assay for ultrasensitive detection of aflatoxin B1 in maize by highly luminescent quantum dot beads. ACS Appl Mater Interfaces. 2014;6(16):14215–22.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Qian ZS, Shan XY, Chai LJ, Ma JJ, Chen JR, Feng H. DNA nanosensor based on biocompatible graphene quantum dots and carbon nanotubes. Biosens Bioelectron. 2014;60:64–70.CrossRefPubMedGoogle Scholar
  13. 13.
    Zhang Y, Wu C, Zhou X, Wu X, Yang Y, Wu H, et al. Graphene quantum dots/gold electrode and its application in living cell H 2 O 2 detection. Nanoscale. 2013;5(5):1816–9.CrossRefPubMedGoogle Scholar
  14. 14.
    Deng L, Liu L, Zhu C, Li D, Dong S. Hybrid gold nanocube@ silica@ graphene-quantum-dot superstructures: synthesis and specific cell surface protein imaging applications. Chem Commun. 2013;49(25):2503–5.CrossRefGoogle Scholar
  15. 15.
    Xie R, Wang Z, Zhou W, Liu Y, Fan L, Li Y, et al. Graphene quantum dots as smart probes for biosensing. Anal Methods. 2016;8(20):4001–16.CrossRefGoogle Scholar
  16. 16.
    Dikin DA, Stankovich S, Zimney EJ, Piner RD, Dommett GHB, Evmenenko G, et al. Preparation and characterization of graphene oxide paper. Nature. 2007;448(7152):457–60.CrossRefPubMedGoogle Scholar
  17. 17.
    Pan D, Zhang J, Li Z, Wu M. Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots. Adv Mater. 2010;22(6):734–8.CrossRefPubMedGoogle Scholar
  18. 18.
    Singh C, Srivastava S, Ali MA, Gupta TK, Sumana G, Srivastava A, et al. Carboxylated multiwalled carbon nanotubes based biosensor for aflatoxin detection. Sens Actuators B: Chemical. 2013;185:258–64.CrossRefGoogle Scholar
  19. 19.
    Bhardwaj H, Singh C, Kumar Pandey M, Sumana G. Star shaped zinc sulphide quantum dots self-assembled monolayers: preparation and applications in food toxin detection. Sens Actuators B: Chemical. 2016;231:624–33.CrossRefGoogle Scholar
  20. 20.
    Ma H, Sun J, Zhang Y, Xia S. Disposable amperometric immunosensor for simple and sensitive determination of aflatoxin B 1 in wheat. Biochem Eng J. 2016;115:38–46.CrossRefGoogle Scholar
  21. 21.
    Brus LE. Electron-electron and electron-hole interactions in small semiconductor crystallites: the size dependence of the lowest excited electronic state. J Chem Phys. 1984;80(9):4403–9.CrossRefGoogle Scholar
  22. 22.
    Li L, Wu G, Yang G, Peng J, Zhao J, Zhu J-J. Focusing on luminescent graphene quantum dots: current status and future perspectives. Nanoscale. 2013;5(10):4015–39.CrossRefPubMedGoogle Scholar
  23. 23.
    Urraca JL, Huertas-Pérez JF, Cazorla GA, Gracia-Mora J, García-Campana AM. Moreno-Bondi MaC. Development of magnetic molecularly imprinted polymers for selective extraction: determination of citrinin in rice samples by liquid chromatography with UV diode array detection. Anal Bioanal Chem. 2016;408(11):3033–42.CrossRefPubMedGoogle Scholar
  24. 24.
    Minati L, Torrengo S, Maniglio D, Migliaresi C, Speranza G. Luminescent graphene quantum dots from oxidized multi-walled carbon nanotubes. Mater Chem Phys. 2012;137(1):12–6.CrossRefGoogle Scholar
  25. 25.
    Wu ZL, Gao MX, Wang TT, Wan XY, Zheng LL, Huang CZ. A general quantitative pH sensor developed with dicyandiamide N-doped high quantum yield graphene quantum dots. Nanoscale. 2014;6(7):3868–74.CrossRefPubMedGoogle Scholar
  26. 26.
    Babacan S, Pivarnik P, Letcher S, Rand AG. Evaluation of antibody immobilization methods for piezoelectric biosensor application. Biosens Bioelectron. 2000;15(11):615–21.CrossRefPubMedGoogle Scholar
  27. 27.
    Khan R, Kaushik A, Solanki PR, Ansari AA, Pandey MK, Malhotra BD. Zinc oxide nanoparticleschitosan composite film for cholesterol biosensor. Anal Chim Acta. 2008;616(2):207–13.CrossRefPubMedGoogle Scholar
  28. 28.
    Bard AJ, Faulkner LR, Leddy J, Zoski CG. Electrochemical methods: fundamentals and applications (vol. 2). New York: Wiley; 1980.Google Scholar
  29. 29.
    Kaushik A, Solanki PR, Kaneto K, Kim CG, Ahmad S, Malhotra BD. Nanostructured iron oxide platform for impedimetric cholesterol detection. Electroanalysis. 2010;22(10):1045–55.CrossRefGoogle Scholar
  30. 30.
    Beizaei A, O'Kane SL, Kamkar A, Misaghi A, Henehan G, Cahill DJ. Highly sensitive toxin microarray assay for aflatoxin B1 detection in cereals. Food Control. 2015;57:210–5.CrossRefGoogle Scholar
  31. 31.
    Liu J-W, Lu C-C, Liu B-H, Yu F-Y. Development of novel monoclonal antibodies-based ultrasensitive enzyme-linked immunosorbent assay and rapid immunochromatographic strip for aflatoxin B1 detection. Food Control. 2016;59:700–7.CrossRefGoogle Scholar
  32. 32.
    Long GL, Winefordner JD (1983) Limit of detection. A closer look at the IUPAC definition. Anal Chem 55(7).Google Scholar
  33. 33.
    Wu S, Duan N, Zhu C, Ma X, Wang M, Wang Z. Magnetic nanobead-based immunoassay for the simultaneous detection of aflatoxin B 1 and ochratoxin a using upconversion nanoparticles as multicolor labels. Biosens Bioelectron. 2011;30(1):35–42.CrossRefPubMedGoogle Scholar
  34. 34.
    Kalita P, Singh J, Kumar Singh M, Solanki PR, Sumana G, Malhotra BD. Ring like self assembled Ni nanoparticles based biosensor for food toxin detection. Appl Phys Lett. 2012;100(9):093702.CrossRefGoogle Scholar
  35. 35.
    Liu Y, Qin Z, Wu X, Jiang H. Immune-biosensor for aflatoxin B 1 based bio-electrocatalytic reaction on micro-comb electrode. Biochem Eng J. 2006;32(3):211–7.CrossRefGoogle Scholar
  36. 36.
    Chuan Li S, Hua Chen J, Cao H, Sheng Yao D, Ling Liu D. Amperometric biosensor for aflatoxin B 1 based on aflatoxin-oxidase immobilized on multiwalled carbon nanotubes. Food Control. 2011;22(1):43–9.CrossRefGoogle Scholar
  37. 37.
    Srivastava S, Kumar V, Ali MA, Solanki PR, Srivastava A, Sumana G, et al. Electrophoretically deposited reduced graphene oxide platform for food toxin detection. Nanoscale. 2013;5(7):3043–51.CrossRefPubMedGoogle Scholar
  38. 38.
    Yagati AK, Chavan SG, Baek C, Lee M-H, Min J (2018) Label-free impedance sensing of aflatoxin B1 with polyaniline nanofibers/au nanoparticle electrode array. Sensors (Basel, Switzerland) 18(5).CrossRefGoogle Scholar
  39. 39.
    Foguel MV, Furlan Giordano G, de Sylos CM, Carlos IZ, Pupim Ferreira AA, Benedetti AV, et al. A low-cost label-free AFB1 impedimetric immunosensor based on functionalized CD-trodes. Chemosensors. 2016;4(3):17.CrossRefGoogle Scholar
  40. 40.
    Liang Y, Baker ME, Yeager BT, Denton MB. Quantitative analysis of aflatoxins by high-performance thin-layer chromatography utilizing a scientifically operated charge-coupled device detector. Anal Chem. 1996;68(22):3885–91.CrossRefGoogle Scholar
  41. 41.
    Sun PS, Chu FS. A simple solid-phase radioimmunoassay for aflatoxin B1. J Food Saf. 1977;1(1):67–75.CrossRefGoogle Scholar
  42. 42.
    Tan Y, Chu X, Shen G-L, Yu R-Q. A signal-amplified electrochemical immunosensor for aflatoxin B1 determination in rice. Anal Biochem. 2009;387(1):82–6.CrossRefPubMedGoogle Scholar
  43. 43.
    Zaijun L, Zhongyun W, Xiulan S, Yinjun F, Peipei C. A sensitive and highly stable electrochemical impedance immunosensor based on the formation of silica gel-ionic liquid biocompatible film on the glassy carbon electrode for the determination of aflatoxin B1 in bee pollen. Talanta. 2010;80(5):1632–7.CrossRefPubMedGoogle Scholar
  44. 44.
    Trucksess MW, Nesheim S, Eppley RM. Thin layer chromatographic determination of deoxynivalenol in wheat and corn. Journal-Association of Official Analytical Chemists. 1984;67(1):40–3.PubMedGoogle Scholar
  45. 45.
    Foguel MV, Furlan Giordano G, de Sylos CM, Carlos IZ, Pupim Ferreira AA, Benedetti AV, et al. A low-cost label-free AFB1 impedimetric immunosensor based on functionalized CD-trodes. Chemosensors. 2016;4(3):17.CrossRefGoogle Scholar
  46. 46.
    Lin Y, Zhou Q, Tang D, Niessner R, Knopp D. Signal-on photoelectrochemical immunoassay for aflatoxin B1 based on enzymatic product-etching MnO2 nanosheets for dissociation of carbon dots. Anal Chem. 2017;89(10):5637–45.CrossRefPubMedGoogle Scholar
  47. 47.
    Shim W-B, Kim MJ, Mun H, Kim M-G. An aptamer-based dipstick assay for the rapid and simple detection of aflatoxin B1. Biosens Bioelectron. 2014;62:288–94.CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Hema Bhardwaj
    • 1
    • 2
  • Chandan Singh
    • 2
  • R. K. Kotnala
    • 2
  • Gajjala Sumana
    • 2
  1. 1.Academy of Scientific and Innovative ResearchCSIR-National Physical LaboratoryNew DelhiIndia
  2. 2.CSIR-National Physical LaboratoryNew DelhiIndia

Personalised recommendations