Analytical and Bioanalytical Chemistry

, Volume 411, Issue 18, pp 4085–4092 | Cite as

Programming biosensing sensitivity by controlling the dimension of nanostructured electrode

  • Min Li
  • Bin Zhao
  • Mengying Deng
  • Chenglie Lin
  • Yueyue Zhang
  • Yi Zhou
  • Jiye Shi
  • Lihua Wang
  • Xiaolei Zuo
  • Chunhai Fan
  • Qian LiEmail author
Research Paper
Part of the following topical collections:
  1. New Insights into Analytical Science in China


Development of new nanostructured materials has shown high impact for improving the performance of chemical and biological sensors. In this work, we show that by controlling the dimensions of the gold flower microelectrode (GFME), it is possible to regulate detection sensitivity of a sensor for rapid analysis of chemical species. A ~13-fold increase in sensitivity was achieved by enlarging the dimension of GFMEs from 70 to 330 μm, whereas the response dynamics are dimension-independent, with the signal attaining saturation ~20 s. Due to the intrinsic nanostructure on the microelectrode surface, our GFME exhibits excellent anti-interference property when applied to detect dopamine (DA) in the presence of 10-fold excess of ascorbic acid (AA). The regulable sensitivity, fast response dynamics, and excellent anti-interference property will make GFME an ideal sensing platform for biomedical applications.

Graphical abstract


Microelectrode Controlled dimension Dimension-dependent sensitivity Dimension-independent response dynamics Anti-interference 



The authors would like to acknowledge the National Natural Science Foundation of China (21422508, 31470960), the Scientific Instrument Developing Project of the Chinese Academy of Sciences (QYZDJ-SSW-SLH031, KJCX2-EW-N03), and the Chinese Academy of Sciences.


This work was supported by the National Natural Science Foundation of China (21422508, 31470960), the Scientific Instrument Developing Project of the Chinese Academy of Sciences (QYZDJ-SSW-SLH031, KJCX2-EW-N03).

Compliance with ethical standards

This research did not involve human participants or animals.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

216_2018_1333_MOESM1_ESM.pdf (737 kb)
ESM 1 (PDF 737 kb)
216_2018_1333_MOESM2_ESM.avi (843 kb)
ESM 2 (AVI 843 kb)


  1. 1.
    Li XM, Chen N, Su YY, He Y, Fan CH, Huang Q. Cytotoxicity of cadmium-based quantum dots. Chin Sci Bull. 2013;58:1393–402.CrossRefGoogle Scholar
  2. 2.
    Zhao WA, William C, Jeffrey CFL, Simon AM, Chen W, Cui YG, et al. DNA aptamer folding on gold nanoparticles: from colloid chemistry to biosensors. J Am Chem Soc. 2008;130:3610–8.CrossRefGoogle Scholar
  3. 3.
    Anna S, Andrzej SP, Marco PM, Kanlaya P, Francesca BB, Delyan RH, et al. Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface. Nat Nanotechnol. 2013;8:137–43.Google Scholar
  4. 4.
    Ye DK, Zuo XL. Fan CH nanostructure-based engineering of the biosensing interface for biomolecular detection. Prog Chem. 2017;29:36–46.Google Scholar
  5. 5.
    Jaeyun K, Piao YZ, Taeghwan H. Multifunctional nanostructured materials for multimodal imaging, and simultaneous imaging and therapy. Chem Soc Rev. 2009;38:372–90.CrossRefGoogle Scholar
  6. 6.
    Ge ZL, Pei H, Wang LH, Song SP, Fan CH. Electrochemical single nucleotide polymorphisms genotyping on surface immobilized three-dimensional branched DNA nanostructure. Sci China Chem. 2011;54:1273–6.CrossRefGoogle Scholar
  7. 7.
    Wightman RM. Probing cellular chemistry in biological systems with microelectrodes. Science. 2006;311:1570–4.CrossRefGoogle Scholar
  8. 8.
    Piotr W, Zoraida G, Rosa M, Bartosz G, Grazyna G. Beneficial impact of oxygen on the electrochemical performance of dopamine sensors based on N-doped reduced graphene oxides. Sensors Actuators B Chem. 2018;257:143–53.CrossRefGoogle Scholar
  9. 9.
    Zhou JQ, Sheng ML, Jiang XY, Wu GZ, Gao F. Simultaneous determination of dopamine, serotonin and ascorbic acid at a glassy carbon electrode modified with carbon-spheres. Sensors. 2013;13:14029–40.CrossRefGoogle Scholar
  10. 10.
    Jitendra S, Kunda S, Nam HK, Joong HL. A new protocol for the distribution of MnO2 nanoparticles on rGO sheets and the resulting electrochemical performance. Appl Surf Sci. 2017;399:95–105.CrossRefGoogle Scholar
  11. 11.
    Chen RS, Huang WH, Tong H, Wang ZL, Cheng JK. Carbon fiber nanoelectrodes modified by single-walled carbon nanotubes. Anal Chem. 2003;75:6341–5.CrossRefGoogle Scholar
  12. 12.
    Elisabetta M, Antonio C, Elisabetta P, Anna GM, Giuseppe M, Cosimino M. All-electrochemical approach for the assembly of platinum nanoparticles/polypyrrole nanowire composite with electrocatalytic effect on dopamine oxidation. J Solid State Electrochem. 2017;21:3495–504.CrossRefGoogle Scholar
  13. 13.
    Tihana M, Maw LF, Andre CA, Sébastien FB, Nicole SZ, Geoffrey AO. Hinged nanorods made using a chemical approach to flexible nanostructures. Nat Nanotechnol. 2007;2:565–9.CrossRefGoogle Scholar
  14. 14.
    Wang JW, Servin R, Budhi S, Inyeal L, Han-Ik J, Gil-Ho K. Alternating current dielectrophoresis optimization of Pt-decorated graphene oxide nanostructures for proficient hydrogen gas sensor. ACS Appl Mater Interfaces. 2015;7:13768–75.CrossRefGoogle Scholar
  15. 15.
    Jaewook L, Kenshin T, Chika NK, Tetsuro S, Enoch YP. Binary nanoparticle graphene hybrid structure-based highly sensitive biosensing platform for norovirus-like particle detection. ACS Appl Mater Interfaces. 2017;9:27298–304.CrossRefGoogle Scholar
  16. 16.
    Hahm J, Lieber CM. Direct ultrasensitive electrical detection of DNA and DNA sequence variations using nanowire nanosensors. Nano Lett. 2004;4:51–4.CrossRefGoogle Scholar
  17. 17.
    Zhang PC, Chen L, Xu TL, Liu HL, Liu XL, Meng JX, et al. Programmable fractal nanostructured interfaces for specific recognition and electrochemical release of cancer cells. Adv Mater. 2013;25:3566–70.CrossRefGoogle Scholar
  18. 18.
    Leyla S, Fang ZC, Edward HS, Shana OK. Programming the detection limits of biosensors through controlled nanostructuring. Nat Nanotechnol. 2009;4:844–8.CrossRefGoogle Scholar
  19. 19.
    Zhu D, Li M, Wang LH, Zuo XLA. Micro E-DNA sensor for selective detection of DA in presence of ascorbic acid. Nucl Sci Tech. 2015;26:115–9.Google Scholar
  20. 20.
    Zerby SE, Ewing AG. Electrochemical monitoring of individual exocytotic events from the varicosities of differentiated PC12 cells. Brain Res. 1996;712:1–10.CrossRefGoogle Scholar
  21. 21.
    Huang WH, Pang DW, Tong H, Wang ZL, Cheng JK. A method for the fabrication of low-noise carbon fiber nanoelectrodes. Anal Chem. 2001;73:1048–52.CrossRefGoogle Scholar
  22. 22.
    Leyla S, Fang ZC, Brian L, Bin XM, Elizaveta V, Ashley JR, et al. Hierarchical nanotextured microelectrodes overcome the molecular transport barrier to achieve rapid, direct bacterial detection. ACS Nano. 2011;5:3360–6.CrossRefGoogle Scholar
  23. 23.
    Zheng YJ, Huang ZJ, Zhao CF, Weng SH, Zheng W, Lin XHA. Gold electrode with a flower-like gold nanostructure for simultaneous determination of DA and ascorbic acid. Microchim Acta. 2013;180:537–44.CrossRefGoogle Scholar
  24. 24.
    Hamelin A. Cyclic voltammetry at gold single-crystal surfaces. Part 1. Behaviour at low-index faces. J Electroanal Chem. 1996;407:1–11.CrossRefGoogle Scholar
  25. 25.
    Robert HC, Ludolf R, Evwin N. Delay in vesicle fusion revealed by electrochemical monitoring of single secretory events in adrenal chromaffin cells. Nature. 1992;356:60–3.CrossRefGoogle Scholar
  26. 26.
    Jagotamoy D, Shana OK. Tuning the bacterial detection sensitivity of nanostructured microelectrodes. Anal Chem. 2013;85:7333–8.CrossRefGoogle Scholar
  27. 27.
    Alexey Y, Jan S, Bernhard W. Printed carbon microelectrodes for electrochemical detection of single vesicle release from PC12 cells. Anal Chem. 2012;84:4613–7.CrossRefGoogle Scholar
  28. 28.
    Yeong TS, Huei FJ. Graphene oxide-assisted dispersion of carbon nanotubes in sulfonatedchitosan-modified electrode for selective detections of dopamine, uric acid, and ascorbic acid. Int J Electrochem Sci. 2015;736:132–8.Google Scholar
  29. 29.
    Sun HF, Chao J, Zuo XLSS, Liu XF, Yuwen LH, Fan CH, et al. Gold nanoparticle-decorated MoS2 nanosheets for simultaneous detection of ascorbic acid, dopamine and uric acid. RSC Adv. 2014;4:27625–9.CrossRefGoogle Scholar
  30. 30.
    Belaidi SF, Civélas A, Castagnola V, Tsopela A, Mazenq L, Gros P, et al. PEDOT-modified integrated microelectrodes for the detectionof ascorbic acid, dopamine and uric acid. Sensors Actuators B Chem. 2015;412:1–9.CrossRefGoogle Scholar
  31. 31.
    Robson PS, Antonio WOL, Silvia HPS. Simultaneous voltammetric detection of ascorbic acid, dopamine and uric acid using a pyrolytic graphite electrode modified into dopamine solution. Anal Chim Acta. 2008;612:89–98.CrossRefGoogle Scholar
  32. 32.
    Wang ZH, Guo HJ, Gui RJ, Jin H, Xia JF, Zhang FF. Simultaneous and selective measurement of dopamine and uric acid using glassy carbon electrodes modified with a complex of gold nanoparticles and multiwall carbon nanotubes. Sensors Actuators B Chem. 2018;255:2069–77.CrossRefGoogle Scholar
  33. 33.
    Kim KJ, Choi JH, Pyo SH, Yun KS, Lee JY, Choi JW, et al. Nanostructure modified microelectrode for electrochemical detection of dopamine with ascorbic acid and uric acid. J Nanosci Nanotechnol. 2016;6:3058–61.CrossRefGoogle Scholar
  34. 34.
    Peter CBG, Kim M, Ralph NA. Nafion-coated carbon fiber electrodes for neurochemical studies in brain tissue. Electroanalysis. 1990;2:175–82.CrossRefGoogle Scholar
  35. 35.
    Vasantha VS, Chen SM. Electrocatalysis and simultaneous detection of dopamine and ascorbic acid using poly(3,4-Ethylenedioxy) thiophene film modified electrodes. J Electroanal Chem. 2006;592:77–87.CrossRefGoogle Scholar
  36. 36.
    Kim YR, Bong S, Kang YJ, Yang YT, Rakesh KM, Jong SK, et al. Electrochemical detection of dopamine in the presence of ascorbic acid using graphene modified electrodes. Biosens Bioelectron. 2010;25:2366–9.CrossRefGoogle Scholar
  37. 37.
    Ahn M, Kim J. Electrochemical behavior of dopamine and ascorbic acid at dendritic Au rod surfaces: selective detection of dopamine in the presence of high concentration of ascorbic acid. J Electroanal Chem. 2012;683:75–9.CrossRefGoogle Scholar
  38. 38.
    Seo B, Kim J. Electrooxidation of glucose at nanoporous gold surfaces: structure dependent electrocatalysis and its application to amperometric detection. Electroanalysis. 2010;22:939–45.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Division of Physical Biology & Bioimaging Center, Shanghai Institute of Applied PhysicsChinese Academy of SciencesShanghaiChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.College of Basic MedicineChengdu University of Traditional Chinese MedicineChengduChina
  4. 4.UCB PharmaBerkshireUK
  5. 5.Institute of Molecular Medicine, Renji Hospital, School of Medicine and School of Chemistry and Chemical EngineeringShanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations