Advertisement

Analytical and Bioanalytical Chemistry

, Volume 410, Issue 27, pp 7055–7065 | Cite as

13C quantification in heterogeneous multiphase natural samples by CMP-NMR using stepped decoupling

  • Paris Ning
  • Ronald Soong
  • Wolfgang Bermel
  • Daniel Lane
  • Myrna J. Simpson
  • André J. SimpsonEmail author
Research Paper

Abstract

Many natural and environmental samples contain combinations of liquids, gels, and solids, yet quantification in the intact state and across multiple phases is highly challenging. Comprehensive multiphase nuclear magnetic resonance (CMP-NMR) combines all the capabilities of high-resolution magic angle spinning (HR-MAS), with the addition of full solids power handling, permitting all phases (i.e., mixtures of liquids, gels, and solids) to be studied and differentiated in intact samples without pre-treatment or extraction. Here, quantification in CMP-NMR is considered. As 1H NMR is considerably broadened in the solid-state, quantification is easier to achieve through 13C which can be observed easily in all the phases. Accurate 13C quantification requires effective 1H decoupling for all the phases, but each phase requires different decoupling conditions. To satisfy these conditions, a pulse sequence termed stepped decoupling is introduced. This sequence can be used to study all components under ideal decoupling conditions resulting in high-resolution spectra without truncation artifacts and provides accurate integrals of components in all phases. The approach is demonstrated on standards and then applied to natural samples including broccoli, soil, and Arabidopsis. The approach permits accurate quantification of chemical categories (for example total carbohydrates) as well as individual species (for example glucose). Further, as the samples are studied intact, volatile species such as methanol and ethylene which are normally hard to detect in plants can be easily quantified in Arabidopsis.

Graphical abstract

Keywords

CMP-NMR Multiphase NMR Decoupling Multiphase quantification Natural intact samples 

Notes

Acknowledgements

We would like to thank the Strategic (STPGP 494273-16) and Discovery Programs (RGPIN-2014-05423), the Canada Foundation for Innovation (CFI), the Ontario Ministry of Research and Innovation (MRI), and the Krembil Foundation for providing funding. A. S. would like to thank the Government of Ontario for an Early Researcher Award.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Simpson AJ, Courtier-Murias D, Longstaffe JG, Masoom H, Soong R, Lam L, et al. Environmental comprehensive multiphase NMR. eMagRes. 2013;2:399–414.Google Scholar
  2. 2.
    Simpson AJ, Simpson MJ, Soong R. Environmental nuclear magnetic resonance spectroscopy: an overview and a primer. Anal Chem. 2018;90:628–39.CrossRefGoogle Scholar
  3. 3.
    Keeler C, Maciel GE. Quantitation in the solid-state 13C NMR analysis of soil and organic soil fractions. Anal Chem. 2003;75:2421–32.CrossRefGoogle Scholar
  4. 4.
    Ziarelli F, Caldarelli S. Solid-state NMR as an analytical tool: quantitative aspects. Solid State Nucl Magn Reson. 2006;29:214–8.CrossRefGoogle Scholar
  5. 5.
    Nuzzo G, Gallo C, D’Ippolito G, Cutignano A, Sardo A, Fontana A. Composition and quantitation of microalgal lipids by ERETIC 1H NMR method. Mar Drugs. 2013;11:3742–53.CrossRefGoogle Scholar
  6. 6.
    Tapaneeyakorn S, Goddard AD, Oates J, Willis CL, Watts A. Solution- and solid-state NMR studies of GPCRs and their ligands. Biochim Biophys Acta Biomembr. 1808;2011:1462–75.Google Scholar
  7. 7.
    Wen JL, Sun SL, Xue BL, Sun RC. Recent advances in characterization of lignin polymer by solution-state nuclear magnetic resonance (NMR) methodology. Materials (Basel). 2013;6:359–91.CrossRefGoogle Scholar
  8. 8.
    Maas WE, Laukien FH, Cory DG. Gradient, high resolution, magic angle sample spinning NMR. J Am Chem Soc. 1996;118:13085–6.CrossRefGoogle Scholar
  9. 9.
    Delgado-Goñi T, Campo S, Martín-Sitjar J, Cabañas ME, San Segundo B, Arús C. Assessment of a 1H high-resolution magic angle spinning NMR spectroscopy procedure for free sugars quantification in intact plant tissue. Planta. 2013;238:397–413.CrossRefGoogle Scholar
  10. 10.
    Miglietta ML, Lamanna R. 1H HR-MAS NMR of carotenoids in aqueous samples and raw vegetables. Magn Reson Chem. 2006;44:675–85.CrossRefGoogle Scholar
  11. 11.
    Grivet JP, Delort AM. NMR for microbiology: in vivo and in situ applications. Prog Nucl Magn Reson Spectrosc. 2009;54:1–53.CrossRefGoogle Scholar
  12. 12.
    Lindon JC, Beckonert OP, Holmes E, Nicholson JK. High-resolution magic angle spinning NMR spectroscopy: application to biomedical studies. Prog Nucl Magn Reson Spectrosc. 2009;55:79–100.CrossRefGoogle Scholar
  13. 13.
    Merkley N, Syvitski RT. Profiling whole microalgal cells by high-resolution magic angle spinning (HR-MAS) magnetic resonance spectroscopy. J Appl Phycol. 2012;24:535–40.CrossRefGoogle Scholar
  14. 14.
    Longstaffe JG, Courtier-Murias D, Soong R, Simpson MJ, Maas WE, Fey M, et al. In-situ molecular-level elucidation of organofluorine binding sites in a whole peat soil. Environ Sci Technol. 2012;46:10508–13.CrossRefGoogle Scholar
  15. 15.
    Fuss TL, Cheng LL. Evaluation of cancer metabolomics using ex vivo high resolution magic angle spinning (HRMAS) magnetic resonance spectroscopy (MRS). Meta. 2016;6CrossRefGoogle Scholar
  16. 16.
    Simpson AJ, Kingery WL, Shaw DR, Spraul M, Humpfer E, Dvortsak P. The application of 1H HR-MAS NMR spectroscopy for the study of structures and associations of organic components at the solid—aqueous interface of a whole soil. Environ Sci Technol. 2001;35:3321–5.CrossRefGoogle Scholar
  17. 17.
    Courtier-Murias D, Farooq H, Masoom H, Botana A, Soong R, Longstaffe JG, et al. Comprehensive multiphase NMR spectroscopy: basic experimental approaches to differentiate phases in heterogeneous samples. J Magn Reson. 2012;217:61–76.CrossRefGoogle Scholar
  18. 18.
    Wheeler HL, Soong R, Courtier-Murias D, Botana A, Fortier-Mcgill B, Maas WE, et al. Comprehensive multiphase NMR: a promising technology to study plants in their native state. Magn Reson Chem. 2015;53:735–44.CrossRefGoogle Scholar
  19. 19.
    Fortier-Mcgill BE, Dutta Majumdar R, Lam L, Soong R, Liaghati-Mobarhan Y, Sutrisno A, et al. Comprehensive multiphase (CMP) NMR monitoring of the structural changes and molecular flux within a growing seed. J Agric Food Chem. 2017;65:6779–88.CrossRefGoogle Scholar
  20. 20.
    Lam L, Soong R, Sutrisno A, De Visser R, Simpson MJ, Wheeler HL, et al. Comprehensive multiphase NMR spectroscopy of intact 13C-labeled seeds. J Agric Food Chem. 2014;62:107–15.CrossRefGoogle Scholar
  21. 21.
    Masoom H, Courtier-Murias D, Farooq H, Soong R, Kelleher BP, Zhang C, et al. Soil organic matter in its native state: unravelling the most complex biomaterial on earth. Environ Sci Technol. 2016;50:1670–80.CrossRefGoogle Scholar
  22. 22.
    Mobarhan YL, Fortier-McGill B, Soong R, Maas WE, Fey M, Monette M, et al. Comprehensive multiphase NMR applied to a living organism. Chem Sci. 2016;7:4856–66.CrossRefGoogle Scholar
  23. 23.
    Silva LMA, Filho EGA, Simpson AJ, Monteiro MR, Venâncio T. Comprehensive multiphase NMR spectroscopy: a new analytical method to study the effect of biodiesel blends on the structure of commercial rubbers. Fuel. 2016;166:436–45.CrossRefGoogle Scholar
  24. 24.
    Masoom H, Courtier-Murias D, Soong R, Maas WE, Fey M, Kumar R, et al. From spill to sequestration: the molecular journey of contamination via comprehensive multiphase NMR. Environ Sci Technol. 2015;49:13983–91.CrossRefGoogle Scholar
  25. 25.
    Farooq H, Courtier-Murias D, Simspon MJ, Maas WE, Fey M, Andrew B, et al. Characterisation of oil contaminated soils by comprehensive multiphase NMR spectroscopy. Environ Chem. 2015;12:227–35.CrossRefGoogle Scholar
  26. 26.
    Pines A, Gibby MG, Waugh JS. Proton-enhanced NMR of dilute spins in solids. J Chem Phys. 1973;59:569–90.CrossRefGoogle Scholar
  27. 27.
    Vanderhart D. L, Earl WL, Garroway A. N. Resolution in 13C NMR of organic solids using high-power proton decoupling and magic-angle sample spinning. J Magn Reson 1981; 44:361–401.CrossRefGoogle Scholar
  28. 28.
    De Paëpe G, Lesage A, Emsley L. The performance of phase modulated heteronuclear dipolar decoupling schemes in fast magic-angle-spinning nuclear magnetic resonance experiments. J Chem Phys. 2003;119:4833–41.CrossRefGoogle Scholar
  29. 29.
    Klinowski J, Magic-angle-spinning NMR. Solid State Ionics. 1985;16:3–14.CrossRefGoogle Scholar
  30. 30.
    Hahn EL, Maxwell DE. Spin echo measurements of nuclear spin coupling in molecules. Phys Rev. 1952;88:1070–84.CrossRefGoogle Scholar
  31. 31.
    Simpson AJ, McNally DJ, Simpson MJ. NMR spectroscopy in environmental research: from molecular interactions to global processes. Prog Nucl Magn Reson Spectrosc. 2011;58:97–175.CrossRefGoogle Scholar
  32. 32.
    Meiboom S, Gill D. Modified spin-echo method for measuring nuclear relaxation times. Rev Sci Instrum. 1958;29:688–91.CrossRefGoogle Scholar
  33. 33.
    Chavhan GB, Babyn PS, Thomas B, Shroff MM, Haacke EM. Principles, techniques, and applications of T2*-based MR imaging and its special applications. Radiographics. 2009;29:1433–49.CrossRefGoogle Scholar
  34. 34.
    Komatsu T, Kobayashi T, Hatanaka M, Kikuchi J. Profiling planktonic biomass using element-specific, multicomponent nuclear magnetic resonance spectroscopy. Environ Sci Technol. 2015;49:7056–62.CrossRefGoogle Scholar
  35. 35.
    Mao J-D, Hu W-G, Schmidt-Rohr K, Davies G, Ghabbour EA, Xing B. Quantitative characterization of humic substances by solid-state carbon-13 nuclear magnetic resonance. Soil Sci Soc Am J. 2000;64:873.CrossRefGoogle Scholar
  36. 36.
    Simpson AJ, Simpson MJ, Soong R. Nuclear magnetic resonance spectroscopy and its key role in environmental research. Environ Sci Technol. 2012;46:11488–96.CrossRefGoogle Scholar
  37. 37.
    Masoom H, Adamo A, Simpson AJ. From the environment to NMR: water suppression for whole samples in their native state. Environ Chem. 2016;13:767–75.CrossRefGoogle Scholar
  38. 38.
    Madhu PK, Pratima R, Kumar A. Suppression of sidebands by variable speed magic angle sample spinning in solid state NMR. Chem Phys Lett. 1996;256:87–9.CrossRefGoogle Scholar
  39. 39.
    Boyer A, Ning P, Killey D, Klukas M, Rowan D, Simpson AJ, et al. Strontium adsorption and desorption in wetlands: role of organic matter functional groups and environmental implications. Water Res. 2018;133:27–36.CrossRefGoogle Scholar
  40. 40.
    Dixon W, Schaefer J, Sefcik M, Stejskal E, McKay R. Total suppression of sidebands in CPMAS C-13 NMR. J Magn Reson. 1982;49:341–5.Google Scholar
  41. 41.
    Novoselsky A, Glaser R. Solid-state CP/MAS 13C NMR studies on conformational polymorphism in sertraline hydrochloride, an antidepressant drug. Magn Reson Chem. 2002;40:723–8.CrossRefGoogle Scholar
  42. 42.
    Axelson DE. Spinning sideband suppression and quantitative analysis in solid state 13C n.m.r. of fossil fuels. Fuel. 1987;66:195–9.CrossRefGoogle Scholar
  43. 43.
    Riggin MT, Sharp AR, Kaiser R, Schneider MH. Transverse NMR relaxation of water in wood. J Appl Polym Sci. 1979;23:3147–54.CrossRefGoogle Scholar
  44. 44.
    Bloembergen N, Purcell EM, Pound RV. Relaxation effects in nuclear magnetic resonance absorption. Phys Rev. 1948;73:679–712.CrossRefGoogle Scholar
  45. 45.
    Van Horn WD, Beel AJ, Kang C, Sanders CR. The impact of window functions on NMR-based paramagnetic relaxation enhancement measurements in membrane proteins. Biochim Biophys Acta Biomembr. 2010;1798:140–9.CrossRefGoogle Scholar
  46. 46.
    Barrie PJ, Madrali ES, Kandiyoti R, Robert H. 13C Solid-state NMR spin-lattice relaxation time measurements of coals. 1993; 479–481.Google Scholar
  47. 47.
    Risa Ø, Melø TM, Sonnewald U. Quantification of amounts and 13 C content of metabolites in brain tissue using high-resolution magic angle spinning 13 C NMR spectroscopy. NMR Biomed. 2009;22:266–71.CrossRefGoogle Scholar
  48. 48.
    Sitter B, Bathen TF, Singstad TE, Fjøsne HE, Lundgren S, Halgunset J, et al. Quantification of metabolites in breast cancer patients with different clinical prognosis using HR MAS MR spectroscopy. NMR Biomed. 2010;23:424–31.PubMedGoogle Scholar
  49. 49.
    Martins JC, Mercier FAG, Vandervelden A, Biesemans M, Wieruszeski JM, Humpfer E, et al. Fine-tuned characterization at the solid/solution interface of organotin compounds grafted onto cross-linked polystyrene by using high-resolution MAS NMR spectroscopy. Chem - A Eur J. 2002;8:3431–41.CrossRefGoogle Scholar
  50. 50.
    Malet-Martino M, Holzgrabe U. NMR techniques in biomedical and pharmaceutical analysis. J Pharm Biomed Anal. 2011;55:1–15.CrossRefGoogle Scholar
  51. 51.
    Shintu L, Caldarelli S, Franke BM. Pre-selection of potential molecular markers for the geographic origin of dried beef by HR-MAS NMR spectroscopy. Meat Sci. 2007;76:700–7.CrossRefGoogle Scholar
  52. 52.
    Campas-Baypoli ON, Snchez-Machado DI, Bueno-Solano C, Núñez-Gastélum JA, Reyes-Moreno C, López-Cervantes J. Biochemical composition and physicochemical properties of broccoli flours. Int J Food Sci Nutr. 2009;60:163–73.CrossRefGoogle Scholar
  53. 53.
    Moing A, Maucourt M, Renaud C, Gaudillère M, Brouquisse R, Lebouteiller B, et al. Quantitative metabolic profiling by 1-dimensional 1H-NMR analyses: application to plant genetics and functional genomics. Funct Plant Biol. 2004;31:889–902.CrossRefGoogle Scholar
  54. 54.
    Calenge F, Saliba-Colombani V, Mahieu S, Loudet O, Daniel-Vedele F, Krapp A. Natural variation for carbohydrate content in Arabidopsis. Interaction with complex traits dissected by quantitative genetics. Plant Physiol. 2006;141:1630–43.CrossRefGoogle Scholar
  55. 55.
    Iqbal N, Khan NA, Ferrante A, Trivellini A, Francini A, Khan MIR. Ethylene role in plant growth, development and senescence: interaction with other phytohormones. Front Plant Sci. 2017;08:1–19.Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Paris Ning
    • 1
  • Ronald Soong
    • 1
  • Wolfgang Bermel
    • 2
  • Daniel Lane
    • 1
  • Myrna J. Simpson
    • 1
  • André J. Simpson
    • 1
    Email author
  1. 1.Environmental NMR CentreUniversity of Toronto ScarboroughTorontoCanada
  2. 2.Bruker BioSpin GmbH.RheinstettenGermany

Personalised recommendations