Advertisement

Analytical and Bioanalytical Chemistry

, Volume 410, Issue 27, pp 7043–7054 | Cite as

Probing some organic ukiyo-e Japanese pigments and mixtures using non-invasive and mobile infrared spectroscopies

  • Carole BironEmail author
  • Gwénaëlle Le Bourdon
  • Josefina Pérez-Arantegui
  • Laurent Servant
  • Rémy Chapoulie
  • Floréal Daniel
Research Paper

Abstract

Non-invasive identification of organic colourants in paintings still remains a challenging issue, especially in the case of extremely thin layers of paint on printed paper such as Japanese ukiyo-e prints. Because prints are fragile artworks, various non-invasive analytical methods need to be employed. The present work focuses on results obtained by combining fibre optic reflectance spectroscopy in the near-infrared range (FORS NIR) with mid-infrared (MIR) spectroscopy. The first step consists of identifying spectroscopic marker bands typical of some organic pigments (indigo, gamboge, cochineal, turmeric, safflower, dragon’s blood). Some reference printouts involving paper substrate, binder and pigments (seldom used or as mixtures) were then investigated in order to establish a straightforward way to extract the marker bands of the pigments. Some data post-treatments were applied to the spectra, such as spectral subtraction, in order to abstract the signal from overlapping bands originating from both substrate and binder, and second derivative calculation to emphasise the pigment marker bands’ frequency positions. These data treatments turned out to be relevant to extract information on the organic pigments of interest, even within complex mixtures.

Keywords

Infrared spectroscopy Organic pigments Japanese woodblock prints Non-invasive method Data post-treatment FORS NIR 

Notes

Acknowledgements

We are grateful to A. Queffelec and to the laboratory PACEA (UMR 5199, University of Bordeaux–CNRS) for the loan of the portable mid-infrared spectrometer used in this work and for the help during the first spectra acquisitions.

Funding

This project (INDIGO, coord. F. Daniel) has received support from LaScArBx, a research programme supported by the National Research Agency (ANR-10-LabX-52).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Luo Y, Basso E, Smith HD II, Leona M. Synthetic arsenic sulfides in Japanese prints of the Meiji period. Herit Sci. 2016;4:17–23.  https://doi.org/10.1186/s40494-016-0087-0.CrossRefGoogle Scholar
  2. 2.
    Sakamoto A, Ochiai S, Higashiyama H, Masutani K, Kimura JI, Koseto-Horyu E, et al. Raman studies of Japanese art objects by a portable Raman spectrometer using liquid crystal tunable filters. J Raman Spectrosc. 2012;43:787–91.  https://doi.org/10.1002/jrs.3080.CrossRefGoogle Scholar
  3. 3.
    Leona M, Winter J. Fiber optics reflectance spectroscopy: a unique tool for the investigation of Japanese paintings. Stud Conserv. 2001;46:153–62.Google Scholar
  4. 4.
    Fitzhugh EW. A database of pigments on Japanese ukiyo-e paintings in the Freer Gallery of Art. In: Studies using scientific methods. Pigments in later Japanese paintings, Freer Gall: Smithsonian Institution; 2003. p. 1–56.Google Scholar
  5. 5.
    Leona M, Winter J. The identification of indigo and Prussian blue on Japanese Edo-period paintings. In: Studies using scientific methods. Pigments in later Japanese paintings, Freer Gall: Smithsonian Institution; 2003. p. 57–80.Google Scholar
  6. 6.
    Kogou S, Lucian A, Bellesia S, Burgio L, Bailey K, Brooks C, et al. A holistic multimodal approach to the non-invasive analysis of watercolour paintings. Appl Phys A Mater Sci Process. 2015;121:987–1002.  https://doi.org/10.1007/s00339-015-9425-4.CrossRefGoogle Scholar
  7. 7.
    Mulholland R, Howell D, Beeby A, Nicholson CE, Domoney K. Identifying eighteenth century pigments at the Bodleian library using in situ Raman spectroscopy, XRF and hyperspectral imaging. Herit Sci. 2017;5:43.  https://doi.org/10.1186/s40494-017-0157-y.CrossRefGoogle Scholar
  8. 8.
    Minamikawa T, Nagai D, Kaneko T, Tanigushi I, Ando M, Akama R, et al. Analytical imaging of colour pigments used in Japanese woodblock prints using Raman microspectroscopy. J Raman Spectrosc. 2017;48:1887–95.  https://doi.org/10.1002/jrs.5263.CrossRefGoogle Scholar
  9. 9.
    Cesaratto A, Centeno SA, Lombardi JR, Shibayama N, Leona M. A complete Raman study of common acid red dyes: application to the identification of artistic materials in polychrome prints. J Raman Spectrosc. 2017;48:601–9.  https://doi.org/10.1002/jrs.5082.CrossRefGoogle Scholar
  10. 10.
    Cesaratto A, Luo YB, Smith HD, Leona M. A timeline for the introduction of synthetic dyestuffs in Japan during the late Edo and Meiji periods. Herit Sci. 2018:6.  https://doi.org/10.1186/s40494-018-0187-0.
  11. 11.
    Aceto M, Agostino A, Fenoglio G, Idone A, Gulmini M, Picollo M, et al. Characterisation of colourants on illuminated manuscripts by portable fibre optic UV-visible-NIR reflectance spectrophotometry. Anal Methods. 2014;6:1488.  https://doi.org/10.1039/c3ay41904e.CrossRefGoogle Scholar
  12. 12.
    Cavaleri T, Giovagnoli A, Nervo M. Pigments and mixtures identification by visible reflectance spectroscopy. Procedia Chem. 2013;8:45–54.  https://doi.org/10.1016/j.proche.2013.03.007.CrossRefGoogle Scholar
  13. 13.
    Maynez-Rojas MA, Casanova-González E, Ruvalcaba-Sil JL. Identification of natural red and purple dyes on textiles by fiber-optics reflectance spectroscopy. Spectrochim Acta A Mol Biomol Spectrosc. 2017;178:239–50.  https://doi.org/10.1016/j.saa.2017.02.019.CrossRefPubMedGoogle Scholar
  14. 14.
    Fabbri M, Picollo M, Porcinai S, Bacci M. Mid-infrared fiber-optics reflectance spectroscopy: a noninvasive technique for remote analysis of painted layers. Part I: technical setup. Appl Spectrosc. 2001;55:428–33.  https://doi.org/10.1366/0003702011952181.CrossRefGoogle Scholar
  15. 15.
    Miliani C, Rosi F, Borgia I, Benedetti P, Brunetti BG, Sgamellotti A. Fiber-optic Fourier transform mid-infrared reflectance spectroscopy: a suitable technique for in situ studies of mural paintings. Appl Spectrosc. 2007;61:293–9.  https://doi.org/10.1366/000370207780220840.CrossRefPubMedGoogle Scholar
  16. 16.
    Vetter W, Schreiner M. Characterization of pigment-binding media systems: comparison of non-invasive in-situ reflection FTIR with transmission FTIR microscopy. e-Preservation Sci. 2011;8:10–22.Google Scholar
  17. 17.
    Miliani C, Rosi F, Daveri A, Brunetti BG. Reflection infrared spectroscopy for the non-invasive in situ study of artists’ pigments. Appl Phys A Mater Sci Process. 2012;106:295–307.  https://doi.org/10.1007/s00339-011-6708-2.CrossRefGoogle Scholar
  18. 18.
    Buti D, Rosi F, Brunetti BG, Miliani C. In-situ identification of copper-based green pigments on paintings and manuscripts by reflection FTIR. Anal Bioanal Chem. 2013;405:2699–711.  https://doi.org/10.1007/s00216-013-6707-6.CrossRefPubMedGoogle Scholar
  19. 19.
    Buti D, Domenici D, Miliani C, García Sáiz C, Gómez Espinoza T, Jímenez Villalba F, et al. Non-invasive investigation of a pre-Hispanic Maya screenfold book: the Madrid Codex. J Archaeol Sci. 2014;42:166–78.  https://doi.org/10.1016/j.jas.2013.08.008.CrossRefGoogle Scholar
  20. 20.
    Zaffino C, Guglielmi V, Faraone S, Vinaccia A, Bruni S. Exploiting external reflection FTIR spectroscopy for the in-situ identification of pigments and binders in illuminated manuscripts. Brochantite and posnjakite as a case study. Spectrochim Acta A Mol Biomol Spectrosc. 2015;136:1076–85.  https://doi.org/10.1016/j.saa.2014.09.132.CrossRefPubMedGoogle Scholar
  21. 21.
    Manfredi M, Barberis E, Aceto M, Marengo E. Non-invasive characterization of colorants by portable diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy and chemometrics. Spectrochim Acta A Mol Biomol Spectrosc. 2017;181:171–9.  https://doi.org/10.1016/j.saa.2017.03.039.CrossRefPubMedGoogle Scholar
  22. 22.
    Bacci M. Fibre optics applications to works of art. Sensors Actuators B. 1995;29:190–6.CrossRefGoogle Scholar
  23. 23.
    Orlando A, Picollo M, Radicati B, Baronti S, Casini A. Principal component analysis of near-infrared and visible spectra: an application to a XIIth century Italian work of art. Appl Spectrosc. 1995;49:459–65.  https://doi.org/10.1366/0003702953964336.CrossRefGoogle Scholar
  24. 24.
    Delaney JK, Walmsley E, Berrie BH, Fletcher F. Multispectral imaging of paintings in the infrared to detect and map blue pigments. In: Scientific examination of art-modern techniques in conservation and analysis. Washington, D.C.: The Nation; 2005. p. 120–36.Google Scholar
  25. 25.
    Delaney JK, Zeibel JG, Thoury M, Littleton R, Palmer M, Morales KM, et al. Visible and infrared imaging spectroscopy of Picasso’s harlequin musician: mapping and identification of artist materials in situ. Appl Spectrosc. 2010;64:584–94.  https://doi.org/10.1366/000370210791414443.CrossRefPubMedGoogle Scholar
  26. 26.
    Vagnini M, Miliani C, Cartechini L, Rocchi P, Brunetti BG, Sgamellotti A. FT-NIR spectroscopy for non-invasive identification of natural polymers and resins in easel paintings. Anal Bioanal Chem. 2009;395:2107–18.  https://doi.org/10.1007/s00216-009-3145-6.CrossRefPubMedGoogle Scholar
  27. 27.
    Dooley KA, Lomax S, Zeibel JG, Miliani C, Ricciardi P, Hoenigswald A, et al. Mapping of egg yolk and animal skin glue paint binders in Early Renaissance paintings using near infrared reflectance imaging spectroscopy. Analyst. 2013;138:4838–48.  https://doi.org/10.1039/c3an00926b.CrossRefPubMedGoogle Scholar
  28. 28.
    Pottier F, Kwimang S, Michelin A, Andraud C, Goubard F, Lavédrine B. Independent macroscopic chemical mappings of cultural heritage materials with reflectance imaging spectroscopy: case study of a 16 th century Aztec manuscript. Anal Methods. 2017;9:5997–6008.  https://doi.org/10.1039/C7AY00749C.CrossRefGoogle Scholar
  29. 29.
    Jurado-López A, de Castro MDL. Use of near infrared spectroscopy in a study of binding media used in paintings. Anal Bioanal Chem. 2004;380:706–11.  https://doi.org/10.1007/s00216-004-2789-5.CrossRefPubMedGoogle Scholar
  30. 30.
    Carlesi S, Becucci M, Ricci M. Vibrational spectroscopies and chemometry for nondestructive identification and differentiation of painting binders. J Chem. 2017;  https://doi.org/10.1155/2017/3475659.CrossRefGoogle Scholar
  31. 31.
    Yonenobu H, Tsuchikawa S, Oda H. Non-destructive near infrared spectroscopic measurement of antique washi calligraphic scrolls. J Near Infrared Spectrosc. 2003;11:407–11.CrossRefGoogle Scholar
  32. 32.
    Yonenobu H, Tsuchikawa S, Sato K. Near-infrared spectroscopic analysis of aging degradation in antique washi paper using a deuterium exchange method. Vib Spectrosc. 2009;51:100–4.  https://doi.org/10.1016/j.vibspec.2008.11.001.CrossRefGoogle Scholar
  33. 33.
    Delaney JK, Ricciardi P, Glinsman L, Palmer M, Burke J. Use of near infrared reflectance imaging spectroscopy to map wool and silk fibres in historic tapestries. Anal Methods. 2016;8:7886–90.  https://doi.org/10.1039/C6AY02066F.CrossRefGoogle Scholar
  34. 34.
    Carlesi S, Bartolozzi G, Cucci C, Marchiafava V, Picollo M. The artists’ materials of Fernando Melani: a precursor of the Poor Art artistic movement in Italy. Spectrochim Acta A Mol Biomol Spectrosc. 2013;104:527–37.  https://doi.org/10.1016/j.saa.2012.11.094.CrossRefPubMedGoogle Scholar
  35. 35.
    Yoshida T, Yuki R. Japanese print-making. A handbook of traditional & modern techniques. Rutland; 1966.Google Scholar
  36. 36.
    Takamatsu T. On Japanese pigments. Tokio Daigaku. 1878.Google Scholar
  37. 37.
    Tokuno T. Japanese wood-cutting and wood-cut printing. Washington, D.C.: Smithsonian Institution, United States National Museum; 1894.Google Scholar
  38. 38.
    Sasaki S, Webber P. A study of dayflower blue used in ukiyo-e prints. Stud Conserv. 2002;47:185–8.  https://doi.org/10.1179/sic.2002.47.s3.038.CrossRefGoogle Scholar
  39. 39.
    Sasaki S, Coombs EI. Dayflower blue: its appearance and lightfastness in traditional Japanese prints. In: Jett P, Winter J, McCarthy B, editors. Scientific Research on the pictorial arts of Asia. Proceedings of the second Forbes symposium at the Freer Gallery of Art, Archetype. London: Freer Gallery of Arts, Smithsonian Institution; 2005. p. 48–57.Google Scholar
  40. 40.
    Derrick M, Newman R, Wright J (2017) Characterization of yellow and red natural organic colorants on Japanese woodblock prints by EEM fluorescence spectroscopy. J Am Inst Conserv 0:1–23. doi:  https://doi.org/10.1080/01971360.2016.1275438.CrossRefGoogle Scholar
  41. 41.
    Kazuma K, Takahashi T, Sato K, Takeuchi H, Matsumoto T, Okuno T. Quinochalcones and flavonoids from fresh florets in different cultivars of Carthamus tinctorius L. Biosci Biotechnol Biochem. 2000;64:1588–99.CrossRefGoogle Scholar
  42. 42.
    Cardon D. Le monde des teintures naturelles. Belin; 2014.Google Scholar
  43. 43.
    Bruni S, Guglielmi V, Pozzi F. Historical organic dyes: a surface-enhanced Raman scattering (SERS) spectral database on Ag Lee-Meisel colloids aggregated by NaClO4. J Raman Spectrosc. 2011;42:1267–81.  https://doi.org/10.1002/jrs.2872.CrossRefGoogle Scholar
  44. 44.
    Riffault J-R, Vergnaud A-D, Toussaint C-J. Nouveau manuel complet du fabricant de couleurs et de vernis, Encyclopéd. Paris: Librairie encyclopédique de Roret; 1862.Google Scholar
  45. 45.
    Clementi C, Doherty B, Gentili PL, Miliani C, Romani A, Brunetti BG, et al. Vibrational and electronic properties of painting lakes. Appl Phys A Mater Sci Process. 2008;92:25–33.  https://doi.org/10.1007/s00339-008-4474-6.CrossRefGoogle Scholar
  46. 46.
    Gupta D, Bleakley B, Gupta RK. Dragon’s blood: botany, chemistry and therapeutic uses. J Ethnopharmacol. 2008;115:361–80.  https://doi.org/10.1016/j.jep.2007.10.018.CrossRefPubMedGoogle Scholar
  47. 47.
    Edwards HGM, De Oliveira LFC, Quye A. Raman spectroscopy of coloured resins used in antiquity: dragon’s blood and related substances. Spectrochim Acta A Mol Biomol Spectrosc. 2001;57:2831–42.  https://doi.org/10.1016/S1386-1425(01)00602-3.CrossRefGoogle Scholar
  48. 48.
    Winter J. East Asian paintings-materials, structures and deterioration mechanisms. London: Archetype; 2008.Google Scholar
  49. 49.
    Baranska M, Schulz H, Rosch P, Strehle MA, Popp J. Identification of secondary metabolites in medicinal and spice plants by NIR-FT-Raman microspectroscopic mapping. Analyst. 2004;129:926–30.  https://doi.org/10.1039/b408933m.CrossRefPubMedGoogle Scholar
  50. 50.
    Baran A, Fiedler A, Schulz H, Baranska M. In situ Raman and IR spectroscopic analysis of indigo dye. Anal Methods. 2010;2:1372–6.  https://doi.org/10.1039/c0ay00311e.CrossRefGoogle Scholar
  51. 51.
    Eremin K, Stenger J, Li Green M. Raman spectroscopy of Japanese artists’ materials: the Tale of Genji by Tosa Mitsunobu. J Raman Spectrosc. 2006;37:1119–24.  https://doi.org/10.1002/jrs.CrossRefGoogle Scholar
  52. 52.
    Derrick M, Stulik D, Landry JM. Infrared spectroscopy in conservation science, scientific. Los Angeles: The Getty Conservation Institute; 1999.Google Scholar
  53. 53.
    Garside P, Wyeth P. Identification of cellulosic fibres by FTIR spectroscopy: thread and single fibre analysis by attenuated total reflectance. Stud Conserv. 2003;48:269–75.CrossRefGoogle Scholar
  54. 54.
    Fan D, Ma W, Wang L, Huang J, Zhao J, Zhang H, et al. Determination of structural changes in microwaved rice starch using Fourier transform infrared and Raman spectroscopy. Starch-Stärke. 2012;64:598–606.  https://doi.org/10.1002/star.201100200.CrossRefGoogle Scholar
  55. 55.
    Workman J Jr, Weyer L. Practical guide and spectral atlas for interpretative near-infrared spectroscopy. London: CRC Press; 2012.Google Scholar
  56. 56.
    Tsiantos C, Tsampodimou M, Kacandes GH, Sánchez Del Río M, Gionis V, Chryssikos GD. Vibrational investigation of indigo-palygorskite association(s) in synthetic Maya blue. J Mater Sci. 2012;47:3415–28.  https://doi.org/10.1007/s10853-011-6189-x.CrossRefGoogle Scholar
  57. 57.
    Kokaly RF, Clark RN, Swayze GA, Livo KE, Hoefen TM, Pearson NC, et al. USGS spectral library version 7. US Geol Surv Data Ser. 2017;1035  https://doi.org/10.3133/ds1035.
  58. 58.
    Cañamares MV, Garcia-Ramos JV, Domingo C, Sanchez-Cortes S. Surface-enhanced Raman scattering study of the anthraquinone red pigment carminic acid. Vib Spectrosc. 2006;40:161–7.  https://doi.org/10.1016/j.vibspec.2005.08.002.CrossRefGoogle Scholar
  59. 59.
    Chen JB, Zhou Q, Sun SQ. Direct chemical characterization of natural wood resins by temperature-resolved and space-resolved Fourier transform infrared spectroscopy. J Mol Struct. 2016;1115:55–62.  https://doi.org/10.1016/j.molstruc.2016.02.079.CrossRefGoogle Scholar
  60. 60.
    Getty Conservation Institute. IOD00187, Curcumin. In: Infrared Raman Users Gr. Spectr. Database; 2007. www.irug.org. Accessed 11 Apr 2018.Google Scholar
  61. 61.
    Kida K, Kitada M. Deterioration of ferric ferrocyanide pigment in ukiyo-e printed in the Late Edo period. J Japan Inst Met. 2010;74:158–64.CrossRefGoogle Scholar
  62. 62.
    Sut M, Fischer T, Repmann F, Raab T, Dimitrova T. Feasibility of field portable near infrared (NIR) spectroscopy to determine cyanide concentrations in soil. Water Air Soil Pollut. 2012;223:5495–504.  https://doi.org/10.1007/s11270-012-1298-y.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Carole Biron
    • 1
    • 2
    Email author
  • Gwénaëlle Le Bourdon
    • 2
  • Josefina Pérez-Arantegui
    • 3
  • Laurent Servant
    • 2
  • Rémy Chapoulie
    • 1
  • Floréal Daniel
    • 1
  1. 1.IRAMAT-CRPAA, Institut de Recherche sur les Archéomatériaux (IRAMAT), UMR CNRS 5060, Centre de Recherche en Physique Appliquée à l’Archéologie (CRPAA) Maison de l’archéologieUniversité Bordeaux MontaignePessacFrance
  2. 2.ISM, Institut des Sciences Moléculaires, UMR CNRS 5255-Bâtiment A12Université de BordeauxTalence CedexFrance
  3. 3.Instituto Universitario de investigación en Ciencias Ambientales de Aragón (IUCA)Universidad de ZaragozaZaragozaSpain

Personalised recommendations