Advertisement

Analytical and Bioanalytical Chemistry

, Volume 410, Issue 25, pp 6361–6370 | Cite as

Where are modern flow techniques heading to?

  • Burkhard Horstkotte
  • Manuel Miró
  • Petr Solich
Trends

Abstract

This article aims to provide an overview on the transition from earlier laboratory automation using analytical flow approaches toward today’s applications of flow methodologies, recent developments, and future trends. The article is directed to flow practitioners while serving as a valuable reference to newcomers in the field in providing insight into flow techniques and conceptual differences in operation across the distinct flow generations. In the focus are the recently developed and complementary techniques Lab-On-Valve and Lab-In-Syringe. In the following, a brief comparison of the different application niches and contributions of flow techniques to past and modern analytical chemistry is given, including (i) the development of sample pretreatment approaches, (ii) the potential applicability for in-situ/on-site monitoring of environmental compartments or technical processes, (iii) the ability of miniaturization of laboratory chemistry, (iv) the unique advantages for implementation of kinetic assays, and finally (v) the beneficial online coupling with scanning or separation analytical techniques. We also give a critical comparison to alternative approaches for automation based on autosamplers and robotic systems. Finally, an outlook on future applications and developments including 3D prototyping and specific needs for further improvements is given.

Graphical abstract

Keywords

Flow techniques Automation and miniaturization Lab-On-Valve and Lab-In-Syringe Sample pretreatment Monitoring and surveillance Hyphenation 

Notes

Acknowledgements

This work was supported by the project EFSA-CDN (No. CZ.02.1.01/0.0/0.0/16_019/0000841) co-funded by ERDF. B. Horstkotte further acknowledges the financial support by the Czech Science Foundation by Project No. 301/17/05409S. M. Miró acknowledges financial support from the Spanish State Research Agency (AEI) through projects CTM2014-56628-C3-3-R (AEI/MINECO/FEDER, UE), CTM2017-84763-C3-3-R (AEI/MINECO/FEDER, UE), and CTM2014-61553-EXP (AEI/MINECO/FEDER, UE). We dedicate this article to the first-generation inventors and researchers of flow techniques.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Růžička J, Hansen E. Flow injection analysis. Part 1. A new concept of fast continuous flow analysis. Anal Chim Acta. 1974;78:145–57.CrossRefGoogle Scholar
  2. 2.
    Zagatto EAG, van Standen JF, Maniasso N, Stefan RI, Marshall GD. Information essential for characterization a flow-based analytical system (IUPAC technical report). Pure Appl Chem. 2002;74:585–92.CrossRefGoogle Scholar
  3. 3.
    Růžička J, Marshall G. Sequential injection: a new concept for chemical sensors, process analysis and laboratory assays. Anal Chim Acta. 1990;237:329–43.CrossRefGoogle Scholar
  4. 4.
    Dias Diniz PHG, de Almeida LF, Harding DP, de Araújo MCU. Flow-batch analysis. TrAC. 2012;35:39–49.Google Scholar
  5. 5.
    Vakh C, Falkova M, Timofeeva I, Moskvin A, Moskvin L, Bulatov A. Flow analysis: a novel approach for classification. Crit Rev Anal Chem. 2016;46:374–88.CrossRefGoogle Scholar
  6. 6.
    Kolev SD, Mc KI. Advances in flow injection analysis and related techniques. Vol 54. 1st ed. Amsterdam: Elsevier; 2008.Google Scholar
  7. 7.
    Trojanowicz M. Flow injection analysis. Instrumentation and applications. 1st ed. Singapore: World Scientific Publishing; 2000.CrossRefGoogle Scholar
  8. 8.
    Trojanowicz M, Kołacińska K. Recent advances in flow injection analysis. Analyst. 2016;141:2085–139.CrossRefGoogle Scholar
  9. 9.
    Hansen EH, Růžička J. Flow Injection Analysis. Tutorial & news on flow based micro analytical techniques. 2018. http://www.flowinjectiontutorial.com. Accessed 1 Apr 2018.
  10. 10.
    Šatínský D, Solich P, Chocholouš P, Karlíček R. Monolithic columns—a new concept of separation in the sequential injection technique. Anal Chim Acta. 2003;499:205–14.CrossRefGoogle Scholar
  11. 11.
    Růžička J. Lab-on-valve: universal microflow analyzer based on sequential and bead injection. Analyst. 2000;125:1053–60.CrossRefGoogle Scholar
  12. 12.
    Ramos II, Magalhães LM, Barreiros L, Reis S, Lima JLFC, Segundo MA. Micro-bead injection spectroscopy for label-free automated determination of immunoglobulin G in human serum. Anal Bioanal Chem. 2018;410:981–8.CrossRefGoogle Scholar
  13. 13.
    Silvestre CIC, Pinto PCAG, Segundo MA, Saraiva MLMFS, Lima JLFC. Enzyme based assays in a sequential injection format: a review. Anal Chim Acta. 2011;689:160–77.CrossRefGoogle Scholar
  14. 14.
    Miró M, Hansen EH. Miniaturization of environmental chemical assays in flowing systems: the lab-on-a-valve approach vis-a-vis lab-on-a-chip microfluidic devices. Anal Chim Acta. 2007;600:46–57.CrossRefGoogle Scholar
  15. 15.
    Zagatto EAG, Carneiro JMT, Vicente S, Fortes PR, Santos JLM, Lima JLFC. Mixing chambers in flow analysis: a review. J Anal Chem. 2009;64:524–32.CrossRefGoogle Scholar
  16. 16.
    Maya F, Horstkotte B, Estela JM, Cerdà V. Automated in-syringe dispersive liquid-liquid microextraction. TrAC. 2014;59:1–8.Google Scholar
  17. 17.
    Horstkotte B, Suárez R, Solich P, Cerdà V. In-syringe stirring: a novel approach for magnetic stirring-assisted dispersive liquid-liquid microextraction. Anal Chim Acta. 2013;788:52–60.CrossRefGoogle Scholar
  18. 18.
    Alexovic M, Horstkotte B, Solich P, Sabo J. Automation of dispersive liquid-liquid microextraction and related techniques. Approaches based on flow, batch, flow-batch and in syringe modes. TrAC. 2017;86:39–55.Google Scholar
  19. 19.
    Prabhu GRD, Urban PL. The dawn of unmanned analytical laboratories. TrAC. 2017;88:41–52.Google Scholar
  20. 20.
    Clavijo S, Avivar J, Suárez R, Cerdà V. Analytical strategies for coupling separation and flow-injection techniques. TrAC. 2015;67:26–33.Google Scholar
  21. 21.
    Hárendarčíková L, Baron D, Šebestová A, Rozsypal J, Petr J. True lab-in-a-syringe technology for bioassays. Talanta. 2017;174:285–8.CrossRefGoogle Scholar
  22. 22.
    Rocha FR. Flow analysis: looking back and forward. J Braz Chem Soc. 2018;29:1032–40.Google Scholar
  23. 23.
    Price AK, Paegel BM. Discovery in droplets. Anal Chem. 2016;88:339–53.CrossRefGoogle Scholar
  24. 24.
    Yang Y, Noviana E, Nguyen MP, Geiss BJ, Dandy DS, Henry CS. Paper-based microfluidic devices: emerging themes and applications. Anal Chem. 2017;89:71–91.CrossRefGoogle Scholar
  25. 25.
    Henriquez C, Maya F, Phansi P, Abouhiat FZ, Danchana K, Cerda V. Automatic flow kinetic-catalytic methods. TrAC. 2016;85:33–45.Google Scholar
  26. 26.
    Mervartová K, Polášeka M, Martínez Calatayud J. Recent applications of flow-injection and sequential-injection analysis techniques to chemiluminescence determination of pharmaceuticals. J Pharm Biomed Anal. 2007;45:367–81.CrossRefGoogle Scholar
  27. 27.
    Solich P, Polášek M, Klimundová J, Růžička J. Sequential injection technique applied to pharmaceutical analysis. TrAC. 2004;23:116–26.Google Scholar
  28. 28.
    Maya F, Estela JM, Cerda V. Flow analysis techniques as effective tools for the improved environmental analysis of organic compounds expressed as total indices. Talanta. 2010;81:1–8.CrossRefGoogle Scholar
  29. 29.
    Baena JR, Valcárcel M. Total indices in analytical sciences. TrAC Trends Anal Chem. 2003;2003:641–6.CrossRefGoogle Scholar
  30. 30.
    Boonjob W, Sklenářová H, Barron L, Solich P, Smith N. Renewable sorbent material for solid phase extraction with direct coupling of sequential injection analysis-bead injection to liquid chromatography-electrospray ionization tandem mass spectrometry. Anal Bioanal Chem. 2015;407:5719–28.CrossRefGoogle Scholar
  31. 31.
    Liu H, Dasgupta PK. Analytical chemistry in a drop. Solvent extraction in a microdrop. Anal Chem. 1996;68:1817–21.CrossRefGoogle Scholar
  32. 32.
    Płotka-Wasylka J, Szczepanska N, de la Guardia M, Namiesnik J. Modern trends in solid phase extraction: new sorbent media. TrAC. 2016;77:23–43.Google Scholar
  33. 33.
    Rossi DT, Zhang N. Automating solid-phase extraction: current aspects and future prospects. J Chromatogr A. 2000;885:97–113.CrossRefGoogle Scholar
  34. 34.
    Dias TR, Melchert WR, Kamogawa MY, Rocha FRP, Zagatto EAG. Fluidized particles in flow analysis: potentialities, limitations and applications. Talanta. 2018;184:325–31.CrossRefGoogle Scholar
  35. 35.
    Zelená L, Marques SS, Segundo MA, Miró M, Pávek P, Sklenářová H, et al. Fully automatic flow-based device for monitoring of drug permeation across a cell monolayer. Anal Bioanal Chem. 2016;408:971–81.CrossRefGoogle Scholar
  36. 36.
    Rosende M, Miró M. Recent trends in automatic dynamic leaching tests for assessing bioaccessible forms of trace elements in solid substrates. TrAC. 2013;45:67–78.Google Scholar
  37. 37.
    Aldstadt JH, Olson DC, Wolcott DK, Marshall GD, Scott WS. Flow and sequential injection analysis techniques in process analysis. In Encyclopedia of Analytical Chemistry. John Wiley & Sons, Ltd. 2006.Google Scholar
  38. 38.
    Lourenco ND, Lopes JA, Almeida CF, Sarraguça MC, Pinheiro HM. Bioreactor monitoring with spectroscopy and chemometrics: a review. Anal Bioanal Chem. 2012;404:1211–37.CrossRefGoogle Scholar
  39. 39.
    Nightingale AM, Beaton AD, Mowlem MC. Trends in microfluidic systems for in situ chemical analysis of natural waters. Sensors Actuators B. 2015;221:1398–405.CrossRefGoogle Scholar
  40. 40.
    Measures C. The collaborative on oceanography and chemical analysis (COCA) and suggestions for future instrumental analysis methods in chemical oceanography. COCA Working Group.Google Scholar
  41. 41.
    Pasamontes A, Callao MP. Sequential injection analysis linked to multivariate curve resolution with alternating least squares. TrAC. 2006;25:77–85.Google Scholar
  42. 42.
    Bosch Reig F, Campíns Falcó P. H-point standard additions method. Part 1. Fundamentals and application to analytical spectroscopy. Analyst. 1988;113:1011–6.CrossRefGoogle Scholar
  43. 43.
    Koscielniak P, K Wieczorek M. Univariate analytical calibration methods and procedures. A review. Anal Chim Acta. 2016;944:14–28.CrossRefGoogle Scholar
  44. 44.
    Sklenářová H, Voráčová I, Chocholouš P, Polášek M. Quantum dots as chemiluminescence enhancers tested by sequential injection technique: comparison of flow and flow-batch conditions. J Luminesc. 2017;184:235–41.CrossRefGoogle Scholar
  45. 45.
    Jayawardane BM, Shen W, McKelvie ID, Kolev SD. Microfluidic paper-based analytical device (μPAD) for the determination of nitrite and nitrate. Anal Chem. 2014;86:7274–9.CrossRefGoogle Scholar
  46. 46.
    Granica M, Fiedoruk-Pogrebniak M, Koncki R, Tymecki Ł. Flow injection analysis in lab-on-paper format. Sensors Actuators B Chem. 2018;257:16–22.CrossRefGoogle Scholar
  47. 47.
    Ho CM, Ng SH, Li KH, Yoon YJ. 3D printed microfluidics for biological applications. Lab Chip. 2015;15:3627–37.CrossRefGoogle Scholar
  48. 48.
    Růžička J, Hansen EH. Integrated microconduits for flow injection analysis. Anal Chim Acta. 1984;161:1–25.CrossRefGoogle Scholar
  49. 49.
    Trojanowicz M. Flow chemistry vs. flow analysis. Talanta. 2016;146:621–40.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Burkhard Horstkotte
    • 1
  • Manuel Miró
    • 1
    • 2
  • Petr Solich
    • 1
  1. 1.Department of Analytical Chemistry, Faculty of Pharmacy in Hradec KrálovéCharles UniversityHradec KrálovéCzech Republic
  2. 2.FI-TRACE Group, Department of ChemistryUniversity of the Balearic IslandsPalma de MallorcaSpain

Personalised recommendations