Analytical and Bioanalytical Chemistry

, Volume 410, Issue 26, pp 6691–6704 | Cite as

Chemometrics in analytical chemistry—part II: modeling, validation, and applications

  • Richard G. Brereton
  • Jeroen Jansen
  • João Lopes
  • Federico Marini
  • Alexey Pomerantsev
  • Oxana Rodionova
  • Jean Michel Roger
  • Beata Walczak
  • Romà TaulerEmail author
Feature Article


The contribution of chemometrics to important stages throughout the entire analytical process such as experimental design, sampling, and explorative data analysis, including data pretreatment and fusion, was described in the first part of the tutorial “Chemometrics in analytical chemistry.” This is the second part of a tutorial article on chemometrics which is devoted to the supervised modeling of multivariate chemical data, i.e., to the building of calibration and discrimination models, their quantitative validation, and their successful applications in different scientific fields. This tutorial provides an overview of the popularity of chemometrics in analytical chemistry.


Calibration Discrimination Validation Prediction Omics Hyperspectral imaging 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Brereton RG, Jansen J, Lopes J, Marini F, Pomerantsev A, Rodionova O, et al. Chemometrics in analytical chemistry—part I: history, experimental design and data analysis tools. Anal Bioanal Chem. 2017;409:5891–9.Google Scholar
  2. 2.
    Kalivas JH, Calibration Methodologies in Comprehensive Chemometrics, Brown S, Tauler R, Walczak B (Eds.). Amsterdam:Elsevier; 2009, Vol.3, chapter 3.01.Google Scholar
  3. 3.
    Belsley DA, Kuh E, Welsch RE. Identifying influential data and sources of collinearity. New York: John Wiley & Sons; 1980.CrossRefGoogle Scholar
  4. 4.
    Brereton RG. One Class Classifiers. J Chemometr. 2011;25:225–46.CrossRefGoogle Scholar
  5. 5.
    Wold S, Sjostrom M. SIMCA: a method for analyzing chemical data in terms of similarity and analogy, in Kowalski, BR (Ed) Chemometrics Theory and Application, American Chemical Society Symposium Series 52, Wash., D.C.:American Chemical Society; 1977, 243–282.Google Scholar
  6. 6.
    Pomerantsev A, OYe R. Concept and role of extreme objects in PCA/SIMCA. J Chemometr. 2014;28:429–38.CrossRefGoogle Scholar
  7. 7.
    Fisher RA. The use of multiple measurements in taxonomic problems. Ann Eugenics. 1936;1936:179M.CrossRefGoogle Scholar
  8. 8.
    Barker M, Rayens W. Partial least squares for discrimination. J Chemom. 2003;17:166–73.CrossRefGoogle Scholar
  9. 9.
    Brereton RG, Lloyd GR. Partial least squares discriminant analysis: taking the magic away. J Chemom. 2014;28:221–35.Google Scholar
  10. 10.
    Rodionova YO, Titova AV, Pomerantsev AL. Discriminant analysis is an inappropriate method of authentication TRAC trends. Anal Chem. 2016;78(4):17–22.Google Scholar
  11. 11.
    Anderssen E, Dyrstad K, Westad F, Martens H. Reducing over-optimism in variable selection by cross-model validation Chemomet. Intell Lab Syst. 2006;84:69–74.CrossRefGoogle Scholar
  12. 12.
    Centner V, Massart DL, de Noord OE, de Jong S, Vandeginste B. Sterna C. Anal Chem. 1996;68:3851–8.CrossRefPubMedGoogle Scholar
  13. 13.
    Serneels S, Filzmoser P, Croux C, Van Espen PJ. Chemometr Intell Lab Syst. 2005;76:197–204.CrossRefGoogle Scholar
  14. 14.
    Zerzucha P, Walczak B. Concept of (dis)similarity in data analysis TRAC trends. Anal Chem. 2012;38:116–28.Google Scholar
  15. 15.
    Harshman R. How can I know if it's real? A catalogue of diagnostics for use with three-mode factor analysis and multidimensional scaling. In: Law HG, Snyder Jr CW, Hattie J, Mc Donald RP, editors. Research Methods for Multimode Data Analysis. New York: Praeger; 1984. p. 566–91.Google Scholar
  16. 16.
    Westad F, Marini F. Validation of chemometric models—a tutorial. Anal Chim Acta. 2015;893:14–24.CrossRefPubMedGoogle Scholar
  17. 17.
    Booksh KS, Kowalski BR. Theory of analytical chemistry. Anal Chem. 1994;66(15):782A–91A.CrossRefGoogle Scholar
  18. 18.
    Forina M, Lanteri S, Armarino C. Chemometrics in food chemistry, in Chemometrics and species identification. Berlin: Springer; 1987. p. 91–143.CrossRefGoogle Scholar
  19. 19.
    Kelly JJ, Barlow CH, Jinguji TM, Callis JB. Ana Chem 1989;61(4);313–320.Google Scholar
  20. 20.
    Wise BM, Gallagher NB. J Process Contr 1996;6(6);329–348.Google Scholar
  21. 21.
    Sharaf MA, Illman DL, Kowalski BR. Chemometrics, chemical analysis, vol. 82. New York: John Wiley and Sons; 1986.Google Scholar
  22. 22.
    Hopke PK. Receptor Modling in Environmental Chemistry, New York: John Wiley Sons; 1981; Hopke PK. Modeling for air quality management, Amsterdam:Elsevier; 1991.Google Scholar
  23. 23.
    Eriksson L, Johansson E. Multivariate design and modeling in QSAR. Chemometr Intell Lab. 1996;34:1–19.CrossRefGoogle Scholar
  24. 24.
    Eriksson L, Byrne T, Johansson E, Trygg J, Wikström C. Multi- and megavariate data analysis basic principles and applications, Umeå. 3rd ed. Sweden: Umetrics academy; 2013.Google Scholar
  25. 25.
    Parastar H, Tauler R. Big (bio)chemical data mining using Chemometric methods: a need for chemists. Angew Chem Int. 2018;
  26. 26.
    Cao K, Lê Boitard S, Besse P. Sparse PLS discriminant analysis: biologically relevant feature selection and graphical displays for multiclass problems. Bioinformatics. 2011;12:253.PubMedGoogle Scholar
  27. 27.
    Smilde AK, Jansen JJ, Hoefsloot HCJ, Lamers RJAN, van der Greef J, Timmerman ME. ANOVA-simultaneous component analysis (ASCA): a new tool for analyzing designed metabolomics data. Bioinformatics. 2005;21:3043–8.CrossRefPubMedGoogle Scholar
  28. 28.
    van den Berg RA, Hoefsloot HCJ, Westerhuis JA, Smilde AK, van der Werf MJ. Centering, scaling, and transformations: improving the biological information content of metabolomics data. BMC Genomics. 2006;7:142.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Gorrochategui E, Jaumot J, Lacorte S, Tauler R. Data analysis strategies for targeted and untargeted LC-MS metabolomic studies: overview and workflow. TrAC - Trends in Anal Chem. 2016;82:425–42.CrossRefGoogle Scholar
  30. 30.
    Grahn HF, Geladi P, editors. Techniques and applications of hyperspectral image analysis. Chichester, UK: John Wiley & Sons Ltd; 2005.Google Scholar
  31. 31.
    Geladi P, Grahn H. Multivariate image analysis in chemistry and related areas: chemometric image analysis. Chichester UK: Wiley; 1996.Google Scholar
  32. 32.
    Olmos V, Benítez L, Marro M, Loza-Alvarez P, Piña B, Tauler R, et al. Relevant aspects of unmixing/resolution analysis for the interpretation of biological vibrational hyperspectral images. TrAC-Trends in Anal Chem. 2017;94:130–40.Google Scholar
  33. 33.
    Felten J, Hall H, Jaumot J, Tauler R, de Juan A, Gorzsás A. Vibrational spectroscopic image analysis of biological material using multivariate curve resolution–alternating least squares (MCR-ALS). Nat Protoc. 2015;10:217–40.CrossRefPubMedGoogle Scholar
  34. 34.
    Piqueras S, Bedia C, Beleites C, Krafft C, Popp J, Maeder M, et al. Handling different spatial resolution in image fusion by multivariate curve resolution-alternating least squares for incomplete image multisets. Anal Chem. 2018;90(11):6757–65.Google Scholar
  35. 35.
    Setou M. (Ed.) Imaging mass spectrometry. Protocols for Mass Microscopy, Berlin:Springer; 2010.Google Scholar
  36. 36.
    Rubakhin SS, Sweedler JV (Eds), mass spectrometry imaging. Principles and protocols. New York: Humana Press; 2010.Google Scholar
  37. 37.
    Bedia C, Tauler R, Jaumot J. Compression strategies for the chemometric analysis of mass spectrometry imaging data. J Chemom. 2016;30:575–88.CrossRefGoogle Scholar
  38. 38.
    Skoog DA, West DM, Holler FJ, Crouch SR. Fundamentals of analytical chemistry. Ninth ed. Belmont, CA: Brooks/Cole; 2014.Google Scholar
  39. 39.
    Christian GD, Dasgupta PN, Schug KA. Analytical chemistry. seventh ed. New York: Wiley; 2013.Google Scholar
  40. 40.
    Zomaya AY, Sakr S. Handbook of big data technologies. Berlin: Springer; 2017.CrossRefGoogle Scholar
  41. 41.
    Burges CJC. A tutorial on support vector machines for pattern recognition. Data Min Know Disc. 1998;2:121–67.CrossRefGoogle Scholar
  42. 42.
    Kohonen T. Self-Organizing maps. Third ed. Berlin: Springer; 2001.Google Scholar
  43. 43.
    Schmidhuber J. Deep learning in neural networks: an overview, 2014.
  44. 44.
    Lutsa J, Ojedaa F, Van de Plasa R, De Moora B, Van Huffel S, Suykens JAK. A tutorial on support vector machine-based methods for classification problems in chemometrics. Anal Chim Acta. 2010;665:129–45.CrossRefGoogle Scholar
  45. 45.
    Nia W, Nørgaard L, Mørup M. Non-linear calibration models for near infrared spectroscopy. Anal Chim Acta. 2014;813:1–14.CrossRefGoogle Scholar
  46. 46.
    Thissen U, Pepers M, Ustun B, Melssen WJ, Buydens LMC. Comparing support vector machines to PLS for spectral regression applications. Chemometr Intell Lab Syst. 2004;73:169–79.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Richard G. Brereton
    • 1
  • Jeroen Jansen
    • 2
  • João Lopes
    • 3
  • Federico Marini
    • 4
  • Alexey Pomerantsev
    • 5
  • Oxana Rodionova
    • 5
  • Jean Michel Roger
    • 6
  • Beata Walczak
    • 7
  • Romà Tauler
    • 8
    Email author
  1. 1.School of ChemistryUniversity of BristolBristolUK
  2. 2.Institute for Molecules and MaterialsRadboud University NijmegenNijmegenThe Netherlands
  3. 3.Research Institute for Medicines (iMed.ULisboa), Faculdade de FarmáciaUniversidade de LisboaLisbonPortugal
  4. 4.Department of ChemistryUniversity of Rome La SapienzaRomeItaly
  5. 5.Institute of Chemical Physics RASMoscowRussia
  6. 6.Irstea, UMR ITAPMontpellierFrance
  7. 7.Institute of ChemistryUniversity of SilesiaKatowicePoland
  8. 8.IDAEA-CSICBarcelonaSpain

Personalised recommendations