Skip to main content

Advertisement

Log in

Optimization, performance, and application of a pyrolysis-GC/MS method for the identification of microplastics

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Plastics are found to be major debris composing marine litter; microplastics (MP, < 5 mm) are found in all marine compartments. The amount of MPs tends to increase with decreasing size leading to a potential misidentification when only visual identification is performed. These last years, pyrolysis coupled with gas chromatography/mass spectrometry (Py-GC/MS) has been used to get information on the composition of polymers with some applications on MP identification. The purpose of this work was to optimize and then validate a Py-GC/MS method, determine limit of detection (LOD) for eight common polymers, and apply this method on environmental MP. Optimization on multiple GC parameters was carried out using polyethylene (PE) and polystyrene (PS) microspheres. The optimized Py-GC/MS method require a pyrolysis temperature of 700 °C, a split ratio of 5 and 300 °C as injector temperature. Performance assessment was accomplished by performing repeatability and intermediate precision tests and calculating limit of detection (LOD) for common polymers. LODs were all below 1 μg. For performance assessment, identification remains accurate despite a decrease in signal over time. A comparison between identifications performed with Raman micro spectroscopy and with Py-GC/MS was assessed. Finally, the optimized method was applied to environmental samples, including plastics isolated from sea water surface, beach sediments, and organisms collected in the marine environment. The present method is complementary to μ-Raman spectroscopy as Py-GC/MS identified pigment containing particles as plastic. Moreover, some fibers and all particles from sediment and sea surface were identified as plastic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Thompson RC, Swan SH, Moore CJ, vom Saal FS. Our plastic age. Philos Trans R Soc Lond Ser B Biol Sci. 2009;364:1973–6. https://doi.org/10.1098/rstb.2009.0054.

    Article  Google Scholar 

  2. PlasticsEurope. Plastics – the Facts 2017: an analysis of European plastics production, demand and waste data. 2018. Available on: http://www.plasticseurope.fr/Document/plastics%2D%2D-the-facts-2017.aspx?FolID=2, Accessed on: 01/29/2018.

  3. Jambeck JR, Geyer R, Wilcox C, Siegler TR, Perryman M, Andrady A, et al. Plastic waste inputs from land into the ocean. Science. 2015;347:768–71. https://doi.org/10.1126/science.1260352.

    Article  CAS  PubMed  Google Scholar 

  4. Cózar A, Echevarría F, González-Gordillo JI, Irigoien X, Úbeda B, Hernández-León S, et al. Plastic debris in the open ocean. Proc Natl Acad Sci. 2014;111:10239–44. https://doi.org/10.1073/pnas.1314705111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Eriksen M, Lebreton LC, Carson HS, Thiel M, Moore CJ, Borerro JC, et al. Plastic pollution in the world’s oceans: more than 5 trillion plastic pieces weighing over 250,000 tons afloat at sea. PLoS One. 2014;9:e111913. https://doi.org/10.1371/journal.pone.0111913.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. van Sebille E, Wilcox C, Lebreton L, Maximenko N, Hardesty BD, van Franeker JA, et al. A global inventory of small floating plastic debris. Environ Res Lett. 2015;10:124006. https://doi.org/10.1088/1748-9326/10/12/124006.

    Article  Google Scholar 

  7. Arthur, C., J. Baker, H. Bamford. International research workshop on the occurrence, effects, and fate of microplastic marine debris. NOAA Technical Memorandum NOS-OR&R-30; 2009.

  8. Li WC, Tse HF, Fok L. Plastic waste in the marine environment: a review of sources, occurrence and effects. Sci Total Environ. 2016;566–567:333–49. https://doi.org/10.1016/j.scitotenv.2016.05.084.

    Article  CAS  PubMed  Google Scholar 

  9. Horton AA, Walton A, Spurgeon DJ, Lahive E, Svendsen C. Microplastics in freshwater and terrestrial environments: evaluating the current understanding to identify the knowledge gaps and future research priorities. Sci Total Environ. 2017;586:127–41. https://doi.org/10.1016/j.scitotenv.2017.01.190.

    Article  CAS  PubMed  Google Scholar 

  10. Imhof HK, Schmid J, Niessner R, Ivleva NP, Laforsch C. A novel, highly efficient method for the separation and quantification of plastic particles in sediments of aquatic environments. Limnol Oceanogr Methods. 2012;10:524–37. https://doi.org/10.4319/lom.2012.10.524.

    Article  CAS  Google Scholar 

  11. Lenz R, Enders K, Stedmon CA, Mackenzie DMA, Nielsen TG. A critical assessment of visual identification of marine microplastic using Raman spectroscopy for analysis improvement. Mar Pollut Bull. 2015;100:82–91. https://doi.org/10.1016/j.marpolbul.2015.09.026.

    Article  CAS  PubMed  Google Scholar 

  12. Shim WJ, Hong SH, Eo SE. Identification methods in microplastic analysis: a review. Anal Methods. 2017;9:1384–91. https://doi.org/10.1039/C6AY02558G.

    Article  CAS  Google Scholar 

  13. CAMPUS. 2018. Available on: https://www.campusplastics.com/campus/list. Accessed on: 01/26/2018.

  14. Remy F, Collard F, Gilbert B, Compère P, Eppe G, Lepoint G. When microplastic is not plastic: the ingestion of artificial cellulose fibers by macrofauna living in Seagrass Macrophytodetritus. Environ Sci Technol. 2015;49:11158–66. https://doi.org/10.1021/acs.est.5b02005.

    Article  CAS  PubMed  Google Scholar 

  15. Rocha-Santos T, Duarte AC. A critical overview of the analytical approaches to the occurrence, the fate and the behavior of microplastics in the environment. TrAC. 2015;65:47–53. https://doi.org/10.1016/j.trac.2014.10.011.

    Article  CAS  Google Scholar 

  16. Frère L, Paul-Pont I, Moreau J, Soudant P, Lambert C, Huvet A, et al. A semi-automated Raman micro-spectroscopy method for morphological and chemical characterizations of microplastic litter. Mar Pollut Bull. 2016;113:461–8. https://doi.org/10.1016/j.marpolbul.2016.10.051.

    Article  CAS  Google Scholar 

  17. Oßmann BE, Sarau G, Schmitt SW, Holtmannspötter H, Christiansen SH, Dicke W. Development of an optimal filter substrate for the identification of small microplastic particles in food by micro-Raman spectroscopy. Anal Bioanal Chem. 2017;409:4099–109. https://doi.org/10.1007/s00216-017-0358-y.

    Article  CAS  PubMed  Google Scholar 

  18. Phuong NN, Zalouk-Vergnoux A, Kamari A, Mouneyrac C, Amiard F, Poirier L, Lagarde F. Quantification and characterization of microplastics in blue mussels (Mytilus edulis): protocol setup and preliminary data on the contamination of the French Atlantic coast. Environ Sci Pollut Res Int. 2017:1–10. https://doi.org/10.1007/s11356-017-8862-3.

    Article  CAS  PubMed  Google Scholar 

  19. Dekiff JH, Remy D, Klasmeier J, Fries E. Occurrence and spatial distribution of microplastics in sediments from Norderney. Environ Pollut. 2014;186:248–56. https://doi.org/10.1016/j.envpol.2013.11.019.

    Article  CAS  PubMed  Google Scholar 

  20. Fries E, Dekiff JH, Willmeyer J, Nuelle M-T, Ebert M, Remy D. Identification of polymer types and additives in marine microplastic particles using pyrolysis-GC/MS and scanning electron microscopy. Environ Sci Process Impacts. 2013;15:1949–56. https://doi.org/10.1039/C3EM00214D.

    Article  CAS  PubMed  Google Scholar 

  21. Nuelle M-T, Dekiff JH, Remy D, Fries E. A new analytical approach for monitoring microplastics in marine sediments. Environ Pollut. 2014;184:161–9. https://doi.org/10.1016/j.envpol.2013.07.027.

    Article  CAS  PubMed  Google Scholar 

  22. Fischer M, Scholz-Böttcher BM. Simultaneous trace identification and quantification of common types of microplastics in environmental samples by pyrolysis-gas chromatography–mass spectrometry. Environ Sci Technol. 2017;51:5052–60. https://doi.org/10.1021/acs.est.6b06362.

    Article  CAS  PubMed  Google Scholar 

  23. Fabbri D, Tartari D, Trombini C. Analysis of poly(vinyl chloride) and other polymers in sediments and suspended matter of a coastal lagoon by pyrolysis-gas chromatography-mass spectrometry. Anal Chim Acta. 2000;413:3–11. https://doi.org/10.1016/S0003-2670(00)00766-2.

    Article  CAS  Google Scholar 

  24. Hendrickson E, Minor EC, Schreiner K. Microplastic abundance and composition in western Lake Superior as determined via microscopy, Pyr-GC/MS, and FTIR. Environ Sci Technol. 2018;52:1787–96. https://doi.org/10.1021/acs.est.7b05829.

    Article  CAS  PubMed  Google Scholar 

  25. Ceccarini A, Corti A, Erba F, Modugno F, La Nasa J, Bianchi S, et al. The hidden microplastics. New insights and figures from the thorough separation and characterization of microplastics and of their degradation by-products in coastal sediments. Environ Sci Technol. 2018; https://doi.org/10.1021/acs.est.8b01487.

    Article  CAS  Google Scholar 

  26. Van Cauwenberghe L, Claessens M, Vandegehuchte MB, Janssen CR. Microplastics are taken up by mussels (Mytilus edulis) and lugworms (Arenicola marina) living in natural habitats. Environ Pollut. 2015;199:10–7. https://doi.org/10.1016/j.envpol.2015.01.008.

    Article  CAS  PubMed  Google Scholar 

  27. Van Cauwenberghe L, Janssen CR. Microplastics in bivalves cultured for human consumption. Environ Pollut. 2014;193:65–70. https://doi.org/10.1016/j.envpol.2014.06.010.

    Article  CAS  PubMed  Google Scholar 

  28. Schymanski D, Goldbeck C, Humpf H-U, Fürst P. Analysis of microplastics in water by micro-Raman spectroscopy: release of plastic particles from different packaging into mineral water. Water Res. 2018;129:154–62. https://doi.org/10.1016/j.watres.2017.11.011.

    Article  CAS  PubMed  Google Scholar 

  29. Li J, Liu H, Paul Chen J. Microplastics in freshwater systems: a review on occurrence, environmental effects, and methods for microplastics detection. Water Res. 2018;137:362–74. https://doi.org/10.1016/j.watres.2017.12.056.

    Article  CAS  PubMed  Google Scholar 

  30. Ivleva NP, Wiesheu AC, Niessner R. Microplastic in aquatic ecosystems. Angew Chem Int Ed. 2016;56:1720–39. https://doi.org/10.1002/anie.201606957.

    Article  CAS  Google Scholar 

  31. Ter Halle A, Jeanneau L, Martignac M, Jardé E, Pedrono B, Brach L, et al. Nanoplastic in the North Atlantic subtropical gyre. Environ Sci Technol. 2017;51:13689–97. https://doi.org/10.1021/acs.est.7b03667.

    Article  CAS  PubMed  Google Scholar 

  32. Tsuge S, Ohtani H, Watanabe C. Pyrolysis-GC/MS data book of synthetic polymers. Elsevier; 2011. p 390.

  33. Kusch P. Application of pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS), in characterization and analysis of microplastics. In: Rocha-Santos T, Duarte A, editors. Elsevier; 2016. p 306.

  34. van Den Dool H, Kratz PD. A generalization of the retention index system including linear temperature programmed gas—liquid partition chromatography. J Chromatogr A. 1963;11:463–71. https://doi.org/10.1016/S0021-9673(01)80947-X.

    Article  Google Scholar 

  35. Dehaut A, Cassone A-L, Frère L, Hermabessiere L, Himber C, Rinnert E, et al. Microplastics in seafood: benchmark protocol for their extraction and characterization. Environ Pollut. 2016;215:223–33. https://doi.org/10.1016/j.envpol.2016.05.018.

    Article  CAS  PubMed  Google Scholar 

  36. International Organization for Standardization (ISO), 5725-3: 1994. Accuracy (trueness and precision) of measurement methods and results-part 3: intermediate measures of the precision of a standard measurement method. Geneva: International Organization for Standardization; 1994.

  37. Caporal-Gautier J, Nivet JM, Algranti P, Guilloteau M, Histe M, Lallier M, et al. Guide de validation analytique: rapport d'une commission SFSTP I: méthodologie. STP Pharma Pratiques. 1992;2:205–26.

    Google Scholar 

  38. Frère L, Paul-Pont I, Rinnert E, Petton S, Jaffré J, Bihannic I, et al. Influence of environmental and anthropogenic factors on the composition, concentration and spatial distribution of microplastics: a case study of the bay of Brest (Brittany, France). Environ Pollut. 2017;225:211–22. https://doi.org/10.1016/j.envpol.2017.03.023.

    Article  CAS  PubMed  Google Scholar 

  39. R Core Team. R: A language and environment for statistical computing. Vienna, Austria; 2014. 2015. Available on: http://www.R-project.org, Accessed on: 10/15/2015.

  40. De Mendiburu F. Agricolae: statistical procedures for agricultural research. 2014. R package version.

  41. McGuffin VL. Theory of chromatography, in Journal of Chromatography Library. Elsevier; 2004. p. 1–93.

  42. Filella M. Questions of size and numbers in environmental research on microplastics: methodological and conceptual aspects. Environ Chem. 2015;12:527–38. https://doi.org/10.1071/EN15012.

    Article  CAS  Google Scholar 

  43. Simon M, van Alst N, Vollertsen J. Quantification of microplastic mass and removal rates at wastewater treatment plants applying focal plane array (FPA)-based Fourier transform infrared (FT-IR) imaging. Water Res. 2018;142:1–9. https://doi.org/10.1016/j.watres.2018.05.019.

    Article  CAS  PubMed  Google Scholar 

  44. Dümichen E, Barthel A-K, Braun U, Bannick CG, Brand K, Jekel M, et al. Analysis of polyethylene microplastics in environmental samples, using a thermal decomposition method. Water Res. 2015;85:451–7. https://doi.org/10.1016/j.watres.2015.09.002.

    Article  CAS  PubMed  Google Scholar 

  45. Ibrahim SF, van den Engh G. Flow cytometry and cell sorting, in cell separation: fundamentals, analytical and preparative methods. In: Kumar A, Galaev IY, Mattiasson B, editors. Berlin, Heidelberg: Springer Berlin Heidelberg; 2007. p. 19–39.

  46. Sgier L, Freimann R, Zupanic A, Kroll A. Flow cytometry combined with viSNE for the analysis of microbial biofilms and detection of microplastics. Nat Commun. 2016;7:11587. https://doi.org/10.1038/ncomms11587.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Shim WJ, Song YK, Hong SH, Jang M. Identification and quantification of microplastics using Nile Red staining. Mar Pollut Bull. 2016;113:469–76. https://doi.org/10.1016/j.marpolbul.2016.10.049.

    Article  CAS  PubMed  Google Scholar 

  48. Maes T, Jessop R, Wellner N, Haupt K, Mayes AG. A rapid-screening approach to detect and quantify microplastics based on fluorescent tagging with Nile Red. Sci Rep. 2017;7:44501. https://doi.org/10.1038/srep44501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Erni-Cassola G, Gibson MI, Thompson RC, Christie-Oleza JA. Lost, but found with Nile Red: a novel method for detecting and quantifying small microplastics (1 mm to 20 μm) in environmental samples. Environ Sci Technol. 2017;51:13641–8. https://doi.org/10.1021/acs.est.7b04512.

    Article  CAS  PubMed  Google Scholar 

  50. Imhof HK, Laforsch C, Wiesheu AC, Schmid J, Anger PM, Niessner R, et al. Pigments and plastic in limnetic ecosystems: a qualitative and quantitative study on microparticles of different size classes. Water Res. 2016;98:64–74. https://doi.org/10.1016/j.watres.2016.03.015.

    Article  CAS  PubMed  Google Scholar 

  51. Endo S, Takizawa R, Okuda K, Takada H, Chiba K, Kanehiro H, et al. Concentration of polychlorinated biphenyls (PCBs) in beached resin pellets: variability among individual particles and regional differences. Mar Pollut Bull. 2005;50:1103–14. https://doi.org/10.1016/j.marpolbul.2005.04.030.

    Article  CAS  PubMed  Google Scholar 

  52. Käppler A, Fischer M, Scholz-Böttcher BM, Oberbeckmann S, Labrenz M, Fischer D, et al. Comparison of μ-ATR-FTIR spectroscopy and py-GCMS as identification tools for microplastic particles and fibers isolated from river sediments. Anal Bioanal Chem. 2018; https://doi.org/10.1007/s00216-018-1185-5.

    Article  CAS  PubMed  Google Scholar 

  53. Tabb DL, Koenig JL. Fourier transform infrared study of plasticized and unplasticized poly(vinyl chloride). Macromolecules. 1975;8:929–34. https://doi.org/10.1021/ma60048a043.

    Article  CAS  Google Scholar 

  54. González N, Fernández-Berridi MJ. Application of Fourier transform infrared spectroscopy in the study of interactions between PVC and plasticizers: PVC/plasticizer compatibility versus chemical structure of plasticizer. J Appl Polym Sci. 2006;101:1731–7. https://doi.org/10.1002/app.23381.

    Article  CAS  Google Scholar 

  55. Elert AM, Becker R, Duemichen E, Eisentraut P, Falkenhagen J, Sturm H, et al. Comparison of different methods for MP detection: what can we learn from them, and why asking the right question before measurements matters? Environ Pollut. 2017;231:1256–64. https://doi.org/10.1016/j.envpol.2017.08.074.

    Article  CAS  PubMed  Google Scholar 

  56. Napper IE, Thompson RC. Release of synthetic microplastic plastic fibres from domestic washing machines: effects of fabric type and washing conditions. Mar Pollut Bull. 2016;112:39–45. https://doi.org/10.1016/j.marpolbul.2016.09.025.

    Article  CAS  PubMed  Google Scholar 

  57. Browne MA, Crump P, Niven SJ, Teuten E, Tonkin A, Galloway T, et al. Accumulation of microplastic on shorelines worldwide: sources and sinks. Environ Sci Technol. 2011;45:9175–9. https://doi.org/10.1021/es201811s.

    Article  CAS  PubMed  Google Scholar 

  58. Lots FAE, Behrens P, Vijver MG, Horton AA, Bosker T. A large-scale investigation of microplastic contamination: abundance and characteristics of microplastics in European beach sediment. Mar Pollut Bull. 2017;123:219–26. https://doi.org/10.1016/j.marpolbul.2017.08.057.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Ludovic Hermabessiere is grateful to the Hauts-de-France Region and ANSES (French Agency for Food, Environmental and Occupational Health & Safety) for the financial support of his PhD. Maria Kazour is financially supported by a PhD fellowship from the National Council for Scientific Research (Lebanon) and Université du Littoral Côte d’Opale (France).

Funding

This paper has been funded by the French National Research Agency (ANR) (ANR-15-CE34-0006-02), as part of the nanoplastics project and also by the French government and the Hauts-de-France Region in the framework of the project CPER 2014-2020 MARCO.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillaume Duflos.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(PDF 1002 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hermabessiere, L., Himber, C., Boricaud, B. et al. Optimization, performance, and application of a pyrolysis-GC/MS method for the identification of microplastics. Anal Bioanal Chem 410, 6663–6676 (2018). https://doi.org/10.1007/s00216-018-1279-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-018-1279-0

Keywords

Navigation