Advertisement

Analytical and Bioanalytical Chemistry

, Volume 410, Issue 25, pp 6633–6642 | Cite as

Strong and oriented conjugation of nanobodies onto magnetosomes for the development of a rapid immunomagnetic assay for the environmental detection of tetrabromobisphenol-A

  • Jinxin He
  • Jiesheng Tian
  • Junjie Xu
  • Kai Wang
  • Ji Li
  • Shirley J. Gee
  • Bruce D. Hammock
  • Qing X. Li
  • Ting Xu
Research Paper

Abstract

Variable domain of heavy chain antibody (nanobody, Nb) derived from camelids is an efficient reagent in monitoring environmental contaminants. Oriented conjugates of Nbs and bacterial magnetic particles (BMPs) provide new tools for the high-throughput immunoassay techniques. An anti-tetrabromobisphenol-A (TBBPA) Nb genetically integrated with an extra cysteine residue at the C terminus was immobilized onto BMPs enclosed within the protein membrane, using a heterobifunctional reagent N-succinimidyl-3-(2-pyridyldithiol) propionate, to form a solid BMP-Nb complex. A rapid and sensitive enzyme-linked immunosorbent assay (ELISA) based on the combination of BMP-Nb and T5-horseradish peroxidase was developed for the analysis of TBBPA, with a total assay time of 30 min and a half-maximum signal inhibition concentration (IC50) of 1.04 ng/mL in PBS (pH 10, 10% methanol and 0.137 moL/L NaCl). This assay can even be performed in 100% methanol, with an IC50 value of 44.3 ng/mL. This assay showed quantitative recoveries of TBBPA from spiked canal water (114–124%) and sediment (109–113%) samples at 1.0–10 ng/mL (or ng/g (dw)). TBBPA residues determined by this assay in real canal water samples were below the limit of detection (LOD) and in real sediments were between <LOD and 23.4 ng/g (dw). The BMP-Nb-based ELISA shows promising application in environmental monitoring.

Graphical abstract

Keywords

Oriented conjugation Nanobody Bacterial magnetic particles Immunomagnetic assay Tetrabromobisphenol-A Environmental detection 

Notes

Acknowledgements

This work was supported in part by the Project of the National Natural Science Foundation of China (21577170), Key Project of Inter-Governmental International Scientific and Technological Innovation Cooperation (2016YFE0108900), China and the National Institute of Environmental Health Sciences Superfund Research Program, P42ES04699, USA.

Compliance with ethical standards

The authors declare that they have no conflict of interest. This research did not involve human participants or animals.

Supplementary material

216_2018_1270_MOESM1_ESM.pdf (494 kb)
ESM 1 (PDF 494 kb)

References

  1. 1.
    Orlov AV, Bragina VA, Nikitin MP, Nikitin PI. Rapid dry-reagent immunomagnetic biosensing platform based on volumetric detection of nanoparticles on 3D structures. Biosens Bioelectron. 2016;79:423–39.CrossRefGoogle Scholar
  2. 2.
    Deng Q, Qiu M, Wang Y, Lv P, Wu C, Sun L, et al. A sensitive and validated immunomagnetic-bead based enzyme-linked immunosorbent assay for analyzing total T-2 (free and modified) toxins in shrimp tissues. Ecotoxicol Environ Saf. 2017;142:441–47.CrossRefGoogle Scholar
  3. 3.
    Felix FS, Angnes L. Electrochemical immunosensors-A powerful tool for analytical applications. Biosens Bioelectron. 2018;102:470–78.CrossRefGoogle Scholar
  4. 4.
    Matsunaga T, Kamiya S. Use of magnetic particles isolated from magnetotactic bacteria for enzyme immobilization. Appl Microbiol Biotechnol. 1987;26(4):328–32.CrossRefGoogle Scholar
  5. 5.
    Bazylinski DA, Frankel RB. Magnetosome formation in prokaryotes. Nat Rev Microbiol. 2004;2(3):217–30.CrossRefGoogle Scholar
  6. 6.
    Schüler D. The biomineralization of magnetosomes in Magnetospirillum gryphiswaldense. Int Microbiol. 2002;5(4):209–14.CrossRefGoogle Scholar
  7. 7.
    Yan L, Da H, Zhang S, López VM, Wang W. Bacterial magnetosome and its potential application. Microbiol Res. 2017;203:19–28.CrossRefGoogle Scholar
  8. 8.
    Gorby YA, Beveridge TJ, Blakemore RP. Characterization of the bacterial magnetosome membrane. J Bacteriol. 1988;170(2):834–41.CrossRefGoogle Scholar
  9. 9.
    Grünberg K, Muller E-C, Otto A, Reszka R, Linder D, Kube M, et al. Biochemical and proteomic analysis of the magnetosome membrane in Magnetospirillum gryphiswaldense. Appl Environ Microbiol. 2004;70(2):1040–50.CrossRefGoogle Scholar
  10. 10.
    Nakamura N, Hashimoto K, Matsunaga T. Immunoassay method for the determination of immunoglobulin G using bacterial magnetic particles. Anal Chem. 1991;63(3):268–72.CrossRefGoogle Scholar
  11. 11.
    Sun JB, Duan JH, Dai SL, Ren J, Guo L, Jiang W, et al. Preparation and anti-tumor efficiency evaluation of doxorubicin-loaded bacterial magnetosomes: magnetic nanoparticles as drug carriers isolated from Magnetospirillum gryphiswaldense. Biotechnol Bioeng. 2008;101(6):1313–20.CrossRefGoogle Scholar
  12. 12.
    Takeyama H, Tsuzuki H, Chow S, Nakayama H, Matsunaga T. Discrimination between Atlantic and Pacific subspecies of northern Bluefin tuna (Thunnus thynnus) by magnetic-capture hybridization using bacterial magnetic particles. Mar Biotechnol (NY). 2000;2(4):309–13.Google Scholar
  13. 13.
    Liu Y, Li GR, Guo FF, Jiang W, Li Y, Li J. Large-scale production of magnetosomes by chemostat culture of Magnetospirillum gryphiswaldense at high cell density. Microb Cell Factories. 2010;9:99.CrossRefGoogle Scholar
  14. 14.
    Tanaka T, Matsunaga T. Fully automated chemiluminescence immunoassay of insulin using antibody−protein A−bacterial magnetic particle complexes. Anal Chem. 2000;72(15):3518–22.CrossRefGoogle Scholar
  15. 15.
    Pečová M, Šebela M, Marková Z, Poláková K, Čuda J, Šafářová K, et al. Thermostable trypsin conjugates immobilized to biogenic magnetite show a high operational stability and remarkable reusability for protein digestion. Nanotechnology. 2013;24(12):125102.CrossRefGoogle Scholar
  16. 16.
    Li A, Zhang H, Zhang X, Wang Q, Tian JS, Li Y, et al. Rapid separation and immunoassay for low levels of Salmonella in foods using magnetosome-antibody complex and real-time fluorescence quantitative PCR. J Sep Sci. 2010;33(21):3437–43.CrossRefGoogle Scholar
  17. 17.
    Nakamura N, Burgess JG, Yagiuda K, Kudo S, Sakaguchi T, Matsunaga T. Detection and removal of Escherichia coli using fluorescein isothiocyanate conjugated monoclonal antibody immobilized on bacterial magnetic particles. Anal Chem. 1993;65(15):2036–39.CrossRefGoogle Scholar
  18. 18.
    Nakamura N, Matsunaga T. Highly sensitive detection of allergen using bacterial magnetic particles. Anal Chim Acta. 1993;281(3):585–89.CrossRefGoogle Scholar
  19. 19.
    Matsunaga T, Ueki F, Obata K, Tajima H, Tanaka T, Takeyama H, et al. Fully automated immunoassay system of endocrine disrupting chemicals using monoclonal antibodies chemically conjugated to bacterial magnetic particles. Anal Chim Acta. 2003;475(1–2):75–83.CrossRefGoogle Scholar
  20. 20.
    Gonzalez-Sapienza G, Rossotti MA, Tabares-da Rosa S. Single-domain antibodies as versatile affinity reagents for analytical and diagnostic applications. Front Immunol. 2017;8:977.CrossRefGoogle Scholar
  21. 21.
    Shen M, Rusling J, Dixit CK. Site-selective orientated immobilization of antibodies and conjugates for immunodiagnostics development. Methods. 2017;116:95–11.CrossRefGoogle Scholar
  22. 22.
    Trilling AK, Harmsen MM, Ruigrok VJ, Zuilhof H, Beekwilder J. The effect of uniform capture molecule orientation on biosensor sensitivity: dependence on analyte properties. Biosens Bioelectron. 2013;40(1):219–26.CrossRefGoogle Scholar
  23. 23.
    Davenport KR, Smith CA, Hofstetter H, Horn JR, Hofstetter O. Site-directed immobilization of a genetically engineered anti-methotrexate antibody via an enzymatically introduced biotin label significantly increases the binding capacity of immunoaffinity columns. J Chromatogr B Anal Technol Biomed Life Sci. 2016;1021:114–21.CrossRefGoogle Scholar
  24. 24.
    Sukhanova A, Even-Desrumeaux K, Kisserli A, Tabary T, Reveil B, Millot JM, et al. Oriented conjugates of single-domain antibodies and quantum dots: toward a new generation of ultrasmall diagnostic nanoprobes. Nanomedicine. 2012;8(4):516–25.CrossRefGoogle Scholar
  25. 25.
    Pollithy A, Romer T, Lang C, Müller FD, Helma J, Leonhardt H, et al. Magnetosome expression of functional camelid antibody fragments (nanobodies) in Magnetospirillum gryphiswaldense. Appl Environ Microbiol. 2011;77(17):6165–71.CrossRefGoogle Scholar
  26. 26.
    Suzuki S, Hasegawa A. Determination of hexabromocyclododecane diastereoisomers and tetrabromobisphenol A in water and sediment by liquid chromatography/mass spectrometry. Anal Sci. 2006;22(3):469–74.CrossRefGoogle Scholar
  27. 27.
    Harrad S, Abdallah MAE, Rose NL, Turner SD, Davidson TA. Current-use brominated flame retardants in water, sediment, and fish from English lakes. Environ Sci Technol. 2009;43(24):9077–83.CrossRefGoogle Scholar
  28. 28.
    Zhang Z, Zhu N, Huang M, Liang Y, Zeng K, Wu X, et al. Sensitive immunoassay for simultaneous determination of tetrabromobisphenol A bis(2-hydroxyethyl) ether and tetrabromobisphenol A mono(hydroxyethyl) ether: an effective and reliable strategy to estimate the typical tetrabromobisphenol A derivative and byproduct in aquatic environments. Environ Pollut. 2017;229:431–38.CrossRefGoogle Scholar
  29. 29.
    Covaci A, Voorspoels S, Abdallah MAE, Geens T, Harrad S, Law RJ. Analytical and environmental aspects of the flame retardant tetrabromobisphenol-A and its derivatives. J Chromatogr A. 2009;1216(3):346–63.CrossRefGoogle Scholar
  30. 30.
    Wang J, Bever CR, Majkova Z, Dechant JE, Yang J, Gee SJ, et al. Heterologous antigen selection of camelid heavy chain single domain antibodies against tetrabromobisphenol A. Anal Chem. 2014;86(16):8296–302.CrossRefGoogle Scholar
  31. 31.
    Xu T, Wang J, Liu SZ, Lü C, Shelver WL, Li QX, et al. A highly sensitive and selective immunoassay for the detection of tetrabromobisphenol A in soil and sediment. Anal Chim Acta. 2012;751:119–27.CrossRefGoogle Scholar
  32. 32.
    Schneider P, Hammock BD. Influence of the ELISA format and the hapten-enzyme conjugate on the sensitivity of an immunoassay for S-triazine herbicides using monoclonal antibodies. J Agric Food Chem. 1992;40(3):525–30.CrossRefGoogle Scholar
  33. 33.
    Yang Y, Lu L, Zhang J, Yang Y, Wu Y, Shao B. Simultaneous determination of seven bisphenols in environmental water and solid samples by liquid chromatography-electrospray tandem mass spectrometry. J Chromatogr A. 2014;1328:26–34.CrossRefGoogle Scholar
  34. 34.
    Heyen U, Schüler D. Growth and magnetosome formation by microaerophilic Magnetospirillum strains in an oxygen-controlled fermentor. Appl Microbiol Biotechnol. 2003;61(5–6):536–44.CrossRefGoogle Scholar
  35. 35.
    Zhang Y, Zhang X, Jiang W, Li Y, Li J. Semicontinuous culture of Magnetospirillum gryphiswaldense MSR-1 cells in an autofermentor by nutrient-balanced and isosmotic feeding strategies. Appl Environ Microbiol. 2011;77(17):5851–56.CrossRefGoogle Scholar
  36. 36.
    Yang J, Li S, Huang X, Tang T, Jiang W, Zhang T, et al. A key time point for cell growth and magnetosome synthesis of Magnetospirillum gryphiswaldense based on real-time analysis of physiological factor. Front Microbiol. 2013;4:210.PubMedPubMedCentralGoogle Scholar
  37. 37.
    Wang J, Majkova Z, Bever CR, Yang J, Gee SJ, Li J, et al. One-step immunoassay for tetrabromobisphenol a using a camelid single domain antibody-alkaline phosphatase fusion protein. Anal Chem. 2015;87(9):4741–48.CrossRefGoogle Scholar
  38. 38.
    Saerens D, Conrath K, Govaert J, Muyldermans S. Disulfide bond introduction for general stabilization of immunoglobulin heavy-chain variable domains. J Mol Biol. 2008;377(2):478–88.CrossRefGoogle Scholar
  39. 39.
    Arya S, Wang KY, Wong CC, Rahman AR. Anti-EpCAM modified LC-SPDP monolayer on gold microelectrode based electrochemical biosensor for MCF-7 cells detection. Biosens Bioelectron. 2013;41:446–51.CrossRefGoogle Scholar
  40. 40.
    Yoon TJ, Lee W, Oh YS, Lee JK. Magnetic nanoparticles as a catalyst vehicle for simple and easy recycling. New J Chem. 2003;27(2):227–29.CrossRefGoogle Scholar
  41. 41.
    Yu T, Cheng W, Li Q, Luo C, Yan L, Zhang D, et al. Electrochemical immunosensor for competitive detection of neuron specific enolase using functional carbon nanotubes and gold nanoprobe. Talanta. 2012;93:433–38.CrossRefGoogle Scholar
  42. 42.
    Abdallah MA-E. Environmental occurrence, analysis and human exposure to the flame retardant tetrabromobisphenol-A (TBBP-A)—a review. Environ Int. 2016;94:235–50.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Jinxin He
    • 1
  • Jiesheng Tian
    • 2
  • Junjie Xu
    • 2
  • Kai Wang
    • 1
  • Ji Li
    • 1
  • Shirley J. Gee
    • 3
  • Bruce D. Hammock
    • 3
  • Qing X. Li
    • 4
  • Ting Xu
    • 1
  1. 1.Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Resources and Environmental SciencesChina Agricultural UniversityBeijingChina
  2. 2.Department of Microbiology, College of Biological SciencesChina Agricultural UniversityBeijingChina
  3. 3.Department of Entomology and UCD Comprehensive Cancer CenterUniversity of CaliforniaDavisUSA
  4. 4.Department of Molecular Biosciences and BioengineeringUniversity of Hawaii at ManoaHonoluluUSA

Personalised recommendations