Advertisement

Analytical and Bioanalytical Chemistry

, Volume 410, Issue 25, pp 6609–6617 | Cite as

Detection of organic compounds in impact glasses formed by the collision of an extraterrestrial material with the Libyan Desert (Africa) and Tasmania (Australia)

  • Leticia Gómez-Nubla
  • Julene Aramendia
  • Silvia Fdez-Ortiz de Vallejuelo
  • Kepa Castro
  • Juan Manuel Madariaga
Research Paper

Abstract

Impact glasses are rich silica melted formed at high temperature and pressure by the impact of an extraterrestrial body on Earth. Here, Libyan Desert glasses (LDGs) and Darwin glasses (DGs) were studied. Two non-destructive analytical techniques were used to detect and characterize organic compounds present in their inclusions: Raman spectroscopy and scanning electron microscopy coupled to energy-dispersive X-ray spectroscopy (SEM-EDS). Phytoliths, humboldtine, palmitic acid, myristic acid, oleic acid, 4-methyl phthalic acid, and S-H stretching vibrations of amino acids were identified. The presence of these particular organic compounds in such materials has not been reported so far, providing information about (a) the ancient matter of the area where the impact glasses were formed, (b) organic matter belonging to the extraterrestrial body which impacted on the Earth, or (c) even to current plant or bacterial life, which could indicate an active interaction of the LDG and DG with the surrounding environment. Moreover, the identification of fullerene allowed us to know a pressure (15 GPa) and temperatures (670 K or 1800–1900 K) at which samples could be subjected.

Keywords

Impact glass Libyan Desert glass Darwin glass Organic compounds Raman spectroscopy 

Notes

Acknowledgements

This work has been funded by MINECO, the Spanish Ministry of Economy and Competitiveness and FEDER, the European Development Regional Fund, through the project ESP2014-56138-C3-2-R, as well as by the Special Action EA13/28 Funded by the University of the Basque Country (UPV/EHU). Technical and human support provided by the Raman-LASPEA Laboratory of the SGIker (UPV/EHU, MICINN, GV/EJ, ERDF and ESF) is gratefully acknowledged.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

216_2018_1266_MOESM1_ESM.pdf (193 kb)
ESM 1 (PDF 193 kb)

References

  1. 1.
    Cooper G, Horz F, Spees A, Chang S. Highly stable meteoritic organic compounds as markers of asteroidal delivery. Earth Planet Sci Lett. 2014;385:206–15.CrossRefGoogle Scholar
  2. 2.
    Pizzarello S, Shock E. The organic composition of carbonaceous meteorites: the evolutionary story ahead of biochemistry. Cold Spring Harb Perspect Biol. 2010;2:a002105.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Sephton MA, Wright IP, Gilmour I, de Leeuw JW, Grady MM, Pillinger CT. High molecular weight organic matter in martian meteorites. Planet Space Sci. 2002;50:711–6.CrossRefGoogle Scholar
  4. 4.
    Bailey MJ, Howard KT, Kirkby KJ, Jeynes C. Characterisation of inhomogeneous inclusions in Darwin glass using ion beam analysis. Nucl Inst Methods Phys Res B. 2009;267:2219–24.CrossRefGoogle Scholar
  5. 5.
    Barrat JA, Jahn BM, Amossé J, Rocchia R, Keller F, Poupeau GR, et al. Geochemistry and origin of Libyan Desert glasses. Geochim Cosmochim Acta. 1997;61:1953–9.CrossRefGoogle Scholar
  6. 6.
    Pratesi G, Viti C, Cipriani C, Mellini M. Geochemistry and origin of Libyan Desert glasses. Geochim Cosmochim Acta. 2002;66:903–11.CrossRefGoogle Scholar
  7. 7.
    Greshake A, Koeberl C, Fritz J, Reimold WU. Brownish inclusions and dark streaks in Libyan Desert glass: evidence for high-temperature melting of the target rock. Meteorit Planet Sci. 2010;45:973–89.CrossRefGoogle Scholar
  8. 8.
    Giuli G, Paris E, Pratesi G, Koeberl C, Cipriani C. Iron oxidation state in the Fe- rich layer and silica matrix of Libyan Desert glass: a high-resolution XANES study. Meteorit Planet Sci. 2003;38:1181–6.CrossRefGoogle Scholar
  9. 9.
    Swaenen M, Stefaniak EA, Frost R, Worobiec A, Van Grieken R. Investigation of inclusions trapped inside Libyan Desert glass by Raman microscopy. Anal Bioanal Chem. 2010;397:2659–65.CrossRefPubMedGoogle Scholar
  10. 10.
    Howard KT. Physical distribution trends in Darwin glass. Meteorit Planet Sci. 2009;44:115–29.CrossRefGoogle Scholar
  11. 11.
    Lo CH, Howard KT, Chung SL, Meffre S. Laser fusion argon-40/argon-39 ages of Darwin impact glass. Meteorit Planet Sci. 2002;37:1555–62.CrossRefGoogle Scholar
  12. 12.
    Aramendia J, Gomez-Nubla L, Fdez-Ortiz de Vallejuelo S, Castro K, Murelaga X, Madariaga JM. New findings by Raman micro spectroscopy in the bulk and inclusions trapped in Libyan Desert glass. Spectrosc Lett. 2011;44:521–5.CrossRefGoogle Scholar
  13. 13.
    Gomez-Nubla L, Aramendia J, Alonso-Olazabal A, Fdez-Ortiz de Vallejuelo S, Castro K, Ortega LA, et al. Darwin impact glass study by Raman spectroscopy in combination with other spectroscopic techniques. J Raman Spectrosc. 2015;46:913–9.CrossRefGoogle Scholar
  14. 14.
    Kramers JD, et al. Unique chemistry of a diamond-bearing pebble from the Libyan Desert glass strewnfield, SW Egypt: evidence for a shocked comet fragment. Earth Planet Sci Lett. 2013;382:21–31.CrossRefGoogle Scholar
  15. 15.
    Meisel T, Koeberl C, Ford RJ. Geochemistry of Darwin impact glass and target rocks. Geochim Cosmochim Acta. 1990;54:1463–74.CrossRefGoogle Scholar
  16. 16.
    Howard KT, et al. Biomass preservation in impact melt ejecta. Nat Geosci. 2013;6:1018–22.CrossRefGoogle Scholar
  17. 17.
    Sapers HM, Osinski GR, Banerjee NR, Preston LJ. Enigmatic tubular features in impact glass. Geology. 2014;42:471–4.CrossRefGoogle Scholar
  18. 18.
    Schultz PH, Harris RS, Clemett SJ, Thomas-Keprta KL, Zarate M. Preserved flora and organics in impact melt breccias. Geology. 2014;42:515–8.CrossRefGoogle Scholar
  19. 19.
    Sapers HM, Banerjee NR, Osinski GR. Potential for impact glass to preserve microbial metabolism. Earth Planet Sci Lett. 2015;430:95–104.CrossRefGoogle Scholar
  20. 20.
    Marshall CP, Edwards HGM, Jehlicka J. Understanding the application of Raman spectroscopy to the detection of traces of life. Astrobiology. 2010;10:229–43.CrossRefPubMedGoogle Scholar
  21. 21.
    Bost N, et al. Testing the ability of the ExoMars 2018 payload to document geological context and potential habitability on Mars. Planet Space Sci. 2015;108:87–97.CrossRefGoogle Scholar
  22. 22.
    Gomez-Nubla L, Aramendia J, Fdez-Ortiz de Vallejuelo S, Alonso-Olazabal A, Castro K, Zuluaga MC, et al. Multispectroscopic methodology to study Libyan Desert glass and its formation conditions. Anal Bioanal Chem. 2017;409:3597–610.CrossRefPubMedGoogle Scholar
  23. 23.
    Castro K, Pérez-Alonso M, Rodríguez-Laso MD, Fernández LA, Madariaga JM. On-line FT-Raman and dispersive Raman spectra database of artists’ materials (e-VISART database). Anal Bioanal Chem. 2005;382:248–58.CrossRefPubMedGoogle Scholar
  24. 24.
    Lafuente B, Downs RT, Yang H, Stone N. The power of databases: the RRUFF project. In: Highlights in mineralogical crystallography (Armbruster T, Danisi RM, editors) Berlin; 2015. p. 1–30.Google Scholar
  25. 25.
    Adar F. Resonance enhancement of Raman spectroscopy: friend or foe? Spectroscopy. 2013;28(6)Google Scholar
  26. 26.
    Tourwe E, Baert K, Hubin A. Surface-enhanced Raman scattering (SERS) of phthalic acid and 4-methyl phthalic acid on silver colloids as a function of pH. Vib Spectrosc. 2006;40:25–32.CrossRefGoogle Scholar
  27. 27.
    Thomas A. Fats and fatty oils. In: Ullmann’s encyclopedia of industrial chemistry, vol. 14. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2012.Google Scholar
  28. 28.
    Albaigés J, Frei RW, Merian E. Chemistry and analysis of hydrocarbons in the environment 5. Glasgow: Gordon and Breach Science Publishers; 1983.Google Scholar
  29. 29.
    Summons RE, et al. Preservation of martian organic and environmental records: final report of the Mars Biosignature Working Group. Astrobiology. 2011;11:157–81.CrossRefPubMedGoogle Scholar
  30. 30.
    Huang Y, Aponte JC, Zhao J, Tarozo R, Hallmann C. Hydrogen and carbon isotopic ratios of polycyclic aromatic compounds in two CM2 carbonaceous chondrites and implications for prebiotic organic synthesis. Earth Planet Sci Lett. 2015;426:101–8.CrossRefGoogle Scholar
  31. 31.
    Gallagher KL, Alfonso-Garcia A, Sanchez J, Potma EO, Santos GM. Plant growth conditions alter phytolith carbon. Front Plant Sci. 2015;6:753.PubMedPubMedCentralGoogle Scholar
  32. 32.
    Frank O, Jehlicka J, Edwards HGM. Raman spectroscopy as tool for the characterization of thio-polyaromatic hydrocarbons in organic minerals. Spectrochim Acta A. 2007;68:1065–9.CrossRefGoogle Scholar
  33. 33.
    Socrates G. Infrared and Raman characteristic group frequencies. England: John Wiley and Sons edition; 2001.Google Scholar
  34. 34.
    Burckle LH, Delaney JS. Terrestrial microfossils in Antarctic ordinary chondrites. Meteorit Planet Sci. 1999;34:475–8.CrossRefGoogle Scholar
  35. 35.
    Blank VD, et al. Synthesis of superhard and ultrahard materials by 3D-polymerization of C60, C70 fullerenes under high pressure (15 Gpa) and temperatures up to 1820 K. Z Naturforsch. 2006;61b:1547–54.CrossRefGoogle Scholar
  36. 36.
    Kuznetsov VL, Butenko YV. Nanodiamond graphitization and properties of onion-like carbon. In: Synthesis, Properties and Applications of ultracrystalline diamong, Gruen DM, Shenderova OA, Vul AY, editors. Springer: Dordrecht, The Netherland, 2005; p. 199–216. Google Scholar
  37. 37.
    Obraztsova D, Fujii M, Hayashi S, Kuznetsov VL, Butenko YV, Chuvilin AL. Raman identification of onion-like carbon. Carbon. 1998;36:821–6.CrossRefGoogle Scholar
  38. 38.
    Elsila JE, de Leon NP, Plows FL, Buseck PR, Zare RN. Fullerenes in extracts of impact breccia samples from Sudbury, Gardnos, and Ries impact craters and the effects of aggregation on C60 detection. Geochim Cosmochim Acta. 2005;69:2891–9.CrossRefGoogle Scholar
  39. 39.
    Heymann D, Chibante LPF, Brooks RR, Wolbach WS, Smalley RE. Fullerenes in the K/T boundary layer. Science. 1994;265:645–7.CrossRefPubMedGoogle Scholar
  40. 40.
    Heymann D, Jenneskens LW, Jehlička J, Koper C, Vlietstra E. Fullerenes in extracts of impact breccia samples from Sudbury, Gardnos, and Ries impact craters and the effects of aggregation on C60 detection. Fuller Nanotub Car N. 2003;11:333–70.CrossRefGoogle Scholar
  41. 41.
    Miura Y, Kobyashi H, Kedves M, Gucsik A. Carbon source from limestone target by impact reaction at the K/T boundary. 30th Lunar and Planetary Science Conference Proceedings, Houston, abs.#1522; 1999.Google Scholar
  42. 42.
    Abate B, Koeberl C, Kruger FJ, Underwood JR Jr. BP and oasis impact structures, Libya, and their relation to Libyan Desert glass. Geol Soc Am. 1999;339:177–92.Google Scholar
  43. 43.
    Wang Y, Alsmeyer DC, McCreery RL. Raman spectroscopy of carbon materials: structural basis of observed spectra. Chem Mater. 1990;2:557–63.CrossRefGoogle Scholar
  44. 44.
    Frost RL, Weier ML. Thermal decomposition of humboldtine—a high resolution thermogravimetric and hot stage Raman spectroscopic study. J Therm Anal Calorim. 2004;75:277–91.CrossRefGoogle Scholar
  45. 45.
    Frost RL. Raman spectroscopy of natural oxalates. Anal Chim Acta. 2004;517:207–14.CrossRefGoogle Scholar
  46. 46.
    Mishra AK, Murli C, Garg N, Chitra R, Sharma SM. Pressure-induced structural transformations in Bis (glycinium) oxalate. J Phys Chem B. 2010;114:17084–91.CrossRefPubMedGoogle Scholar
  47. 47.
    Czamara K, Majzner K, Pacia MZ, Kochan K, Kaczor A, Baranska M. Raman spectroscopy of lipids: a review. J Raman Spectrosc. 2015;46:4–20.CrossRefGoogle Scholar
  48. 48.
    Kumar R, Sripriya R, Balaji S, Senthil Kumar M, Sehgal PK. Physical characterization of succinylated type I collagen by Raman spectra and MALDI-TOF/MS and in vitro evaluation for biomedical applications. J Mol Struct. 2011;994:117–24.CrossRefGoogle Scholar
  49. 49.
    Lalman JA, Bagley DM. Anaerobic degradation and methanogenic inhibitory effects of oleic and stearic acids. Water Res. 2001;35:2975–83.CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Leticia Gómez-Nubla
    • 1
  • Julene Aramendia
    • 1
  • Silvia Fdez-Ortiz de Vallejuelo
    • 1
  • Kepa Castro
    • 1
  • Juan Manuel Madariaga
    • 1
  1. 1.Department of Analytical Chemistry, Faculty of Science and TechnologyUniversity of the Basque Country UPV/EHUBilbaoSpain

Personalised recommendations