Advertisement

Analytical and Bioanalytical Chemistry

, Volume 410, Issue 25, pp 6573–6583 | Cite as

Nanocarbon material-supported conducting poly(melamine) nanoparticle-modified screen-printed carbon electrodes for highly sensitive determination of nitrofuran drugs by adsorptive stripping voltammetry

  • Shao-Hua Chiu
  • Ya-Ling Su
  • Anh V. T. Le
  • Shu-Hua Cheng
Research Paper

Abstract

The toxicity of nitrofuran drugs has attracted great attention, and the reported electroanalytical methods suffered limited sensitivity. In this work, a sensitive electrochemical assay in the cathodic region is developed to determine four nitrofuran derivatives, including nitrofurantoin (NFT), nitrofurazone (NFZ), furaltadone (FTD), and furazolidone (FZD). The screen-printed carbon electrode (SPCE) was used as the electrode substrate, and the sensing surface was composed of multi-walled carbon nanotube (MWCNT) and conducting poly(melamine) (PME). The overoxidation-pretreated MWCNTs affect the surface morphology of the electrodeposited PME and, thus, the interaction with nitrofuran drugs. The characteristics of the nanocomposite-modified electrode surfaces were well characterized by field emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS), and surface water contact angle experiments. The nanocomposite-modified electrodes exhibited excellent adsorption and electrochemical reduction of nitrofurans by cyclic voltammetry. The proposed assay exhibited a linear range of sub-micro to micro molar concentrations for the four drugs under the optimized differential pulse voltammetric (DPV) technique. The detection limits were found to be in the nanomolar ranges. The developed assay was applied to detect NFT in two real samples, and the results showed good recoveries that ranged from 99.0 to 104.8% and 98.0 to 103.2% for milk and lake water samples, respectively.

Graphical abstract

Keywords

Nitrofurans Multi-walled carbon nanotubes Poly(melamine) Adsorption Differential pulse voltammetry 

Notes

Funding information

The authors receive financial support from the Ministry of Science and Technology of the Republic of China under grant MOST 104-2113-M-260-004.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Supplementary material

216_2018_1262_MOESM1_ESM.pdf (2 mb)
ESM 1 (PDF 2088 kb)

References

  1. 1.
    Munoz-Davila MJ. Role of old antibiotics in the era of antibiotic resistance. Highlighted nitrofurantoin for the treatment of lower urinary tract infections. Antibiotics. 2014;3:39–48.CrossRefGoogle Scholar
  2. 2.
    Vass M, Hruska K, Franek M. Nitrofuran antibiotics: a review on the application, prohibition and residual analysis. Vet Med. 2008;53:469–500.CrossRefGoogle Scholar
  3. 3.
    Dı́az TG, Cabanillas AG, Valenzuela MA, Correa C, Salinas F. Determination of nitrofurantoin, furazolidone and furaltadone in milk by high-performance liquid chromatography with electrochemical detection. J Chromatogr A. 1997;764:243–8.CrossRefGoogle Scholar
  4. 4.
    Arancibia V, Valderrama M, Madariaga A, Zúñiga MC, Segura R. Extraction of nitrofurantoin and its toxic metabolite from urine by supercritical fluids. Quantitation by high performance liquid chromatography with UV detection. Talanta. 2003;61:377–83.CrossRefGoogle Scholar
  5. 5.
    Barbosa J, Moura S, Barbosa R, Ramos F, da Silveira MIN. Determination of nitrofurans in animal feeds by liquid chromatography-UV photodiode array detection and liquid chromatography-ionspray tandem mass spectrometry. Anal Chim Acta. 2007;586:359–65.CrossRefGoogle Scholar
  6. 6.
    Liu W, Zhao C, Zhang Y, Lu S, Liu J, Xi R. Preparation of polyclonal antibodies to a derivative of 1-aminohydantoin (AHD) and development of an indirect competitive ELISA for the detection of nitrofurantoin residue in water. J Agric Food Chem. 2007;55:6829–34.CrossRefGoogle Scholar
  7. 7.
    Ernst G, Van Der Kaaden A. High-performance liquid chromatographic analysis of furazolidone in liver and kidney. J Chromatogr A. 1980;198:526–8.CrossRefGoogle Scholar
  8. 8.
    Fogg AG, Ghawji AB. Reductive amperometric determination of nitrofurantoin and acetazolamide at a sessile mercury drop electrode using flow injection analysis. Analyst. 1988;113:727–30.CrossRefGoogle Scholar
  9. 9.
    Hammam E. Determination of nitrofurantoin drug in pharmaceutical formulation and biological fluids by square-wave cathodic adsorptive stripping voltammetry. J Pharm Biomed Anal. 2002;30:651–9.CrossRefGoogle Scholar
  10. 10.
    Jain R, Dwivedi A, Mishra R. Stripping voltammetric behaviour of toxic drug nitrofurantoin. J Hazard Mater. 2009;169:667–72.CrossRefGoogle Scholar
  11. 11.
    Ghawji AB, Fogg AG. Reduction in size by electrochemical pre-treatment at high negative potentials of the background currents obtained at negative potentials at glassy carbon electrodes and its application in the reductive flow injection amperometric determination of nitrofurantoin. Analyst. 1986;111:157–61.CrossRefGoogle Scholar
  12. 12.
    de Lima-Neto P, Correia AN, Portela RR, da Silva Julião M, Linhares-Junior GF, de Lima JE. Square wave voltammetric determination of nitrofurantoin in pharmaceutical formulations on highly boron-doped diamond electrodes at different boron-doping contents. Talanta. 2010;80:1730–6.CrossRefGoogle Scholar
  13. 13.
    Salgado-Figueroa P, Jara-Ulloa P, Alvarez-Lueje A, Squella JA. Sensitive determination of nitrofurantoin by flow injection analysis using carbon nanofiber screen printed electrodes. Electroanalysis. 2013;25:1433–8.CrossRefGoogle Scholar
  14. 14.
    Aydoğdu G, Günendi G, Zeybek DK, Zeybek B, Pekyardımcı Ş. A novel electrochemical DNA biosensor based on poly-(5-amino-2-mercapto-1,3, 4-thiadiazole) modified glassy carbon electrode for the determination of nitrofurantoin. Sensors Actuators B Chem. 2014;197:211–9.CrossRefGoogle Scholar
  15. 15.
    Krejčová Z, Barek J, Vyskočil V. Voltammetric determination of nitrofurantoin at a mercury meniscus modified silver solid amalgam electrode. Electroanalysis. 2015;27:185–92.CrossRefGoogle Scholar
  16. 16.
    Khodari M, Mansour H, El-Din HS, Mersal G. Cathodic stripping voltammetry of the antibacterial drug (nitrofurantoin). Anal Lett. 1998;31:251–62.CrossRefGoogle Scholar
  17. 17.
    Zhang Z, Wu Y, Li X, Wang Y, Li H, Fu Q, et al. Multi-class method for the determination of nitroimidazoles, nitrofurans, and chloramphenicol in chicken muscle and egg by dispersive-solid phase extraction and ultra-high performance liquid chromatography-tandem mass spectrometry. Food Chem. 2017;217:182–90.CrossRefGoogle Scholar
  18. 18.
    Liu X, Luo L, Ding Y, Wu Q, Wei Y, Ye D. A highly sensitive method for determination of guanine, adenine and epinephrine using poly-melamine film modified glassy carbon electrode. J Electroanal Chem. 2012;675:47–53.CrossRefGoogle Scholar
  19. 19.
    Gupta P, Goyal RN. Polymelamine modified edge plane pyrolytic graphite sensor for the electrochemical assay of serotonin. Talanta. 2014;120:17–22.CrossRefGoogle Scholar
  20. 20.
    Li H, Wang X, Yu Z. Electrochemical biosensor for sensitively simultaneous determination of dopamine, uric acid, guanine, and adenine based on poly-melamine and nano Ag hybridized film-modified electrode. J Solid State Electrochem. 2014;18:105–13.CrossRefGoogle Scholar
  21. 21.
    He S, Chen Z, Yu Y, Shi L. A novel non-enzymatic hydrogen peroxide sensor based on poly-melamine film modified with platinum nanoparticles. RSC Adv. 2014;4:45185–90.CrossRefGoogle Scholar
  22. 22.
    Rosy R, Goyal RN. Gold nanoparticles decorated poly-melamine modified glassy carbon sensor for the voltammetric estimation of domperidone in pharmaceuticals and biological fluids. Talanta. 2015;141:53–9.CrossRefGoogle Scholar
  23. 23.
    Cotchim S, Thavarungkul P, Kanatharana P, Limbut W. A new strategy for 2, 4, 6-Trinitrotoluene adsorption and electrochemical reduction on poly (melamine)/graphene oxide modified electrode. Electrochim Acta. 2015;184:102–10.CrossRefGoogle Scholar
  24. 24.
    Peng J, Feng Y, Han X-X, Gao Z-N. Simultaneous determination of bisphenol A and hydroquinone using a poly (melamine) coated graphene doped carbon paste electrode. Microchim Acta. 2016;183:2289–96.CrossRefGoogle Scholar
  25. 25.
    Ren J, Li L, Cui M, Zhai M, Yu C, Ji X. Nitrobenzene electrochemical sensor based on silver nanoparticle supported on poly-melamine functional multi-walled carbon nanotube. Ionics. 2016;22:1937–45.CrossRefGoogle Scholar
  26. 26.
    Palanisamy S, Ramaraj SK, Chen S-M, Chiu T-W, Velusamy V, Yang TC, et al. One pot electrochemical synthesis of poly(melamine) entrapped gold nanoparticles composite for sensitive and low level detection of catechol. J Colloid Interface Sci. 2017;496:364–70.CrossRefGoogle Scholar
  27. 27.
    Su Y-L, Cheng S-H. Sensitive and selective determination of gallic acid in green tea samples based on an electrochemical platform of poly(melamine) film. Anal Chim Acta. 2015;901:41–50.CrossRefGoogle Scholar
  28. 28.
    Shen X-E, Shan X-Q, Dong D-M, Hua X-Y, Owens G. Kinetics and thermodynamics of sorption of nitroaromatic compounds to as-grown and oxidized multiwalled carbon nanotubes. J Colloid Interface Sci. 2009;330:1–8.CrossRefGoogle Scholar
  29. 29.
    Moraes FC, Tomie Tanimoto S, Salazar-Banda GR, Machado SAS, Mascaro LH. A new indirect electroanalytical method to monitor the contamination of natural waters with 4-nitrophenol using multiwall carbon nanotubes. Electroanalysis. 2009;21:1091–8.CrossRefGoogle Scholar
  30. 30.
    Yang R, Wei Y, Y Y, Gao C, Wang L, Liu J-H, et al. Make it different: the plasma treated multi-walled carbon nanotubes improve electrochemical performances toward nitroaromatic compounds. Electrochim Acta. 2012;76:354–62.CrossRefGoogle Scholar
  31. 31.
    Li J, Feng H, Feng Y, Liu J, Liu Y, Jiang J, et al. A glassy carbon electrode modified with β-cyclodextin, multiwalled carbon nanotubes and graphene oxide for sensitive determination of 1,3-dinitrobenzene. Microchim Acta. 2014;181:1369–77.CrossRefGoogle Scholar
  32. 32.
    Wei Y, Kong L-T, Yang R, Wang L, Liu J-H, Huang X-J. Single-walled carbon nanotube/pyrenecyclodextrin nanohybrids for ultrahighly sensitive and selective detection of p-nitrophenol. Langmuir. 2011;27:10295–301.CrossRefGoogle Scholar
  33. 33.
    Chen J, Yang G, Chen M, Li W. Sensitive determination of 4-nitrophenol based on multi-walled carbon nano-tube/ionic liquid/chitosan composite film modified electrode. Russ J Electrochem. 2009;45:1287–91.CrossRefGoogle Scholar
  34. 34.
    Sobkowiak M, Rebis T, Milczarek G. Electrocatalytic sensing of poly-nitroaromatic compounds on multiwalled carbon nanotubes modified with alkoxysulfonated derivative of PEDOT. Mater Chem Phys. 2017;186:108–14.CrossRefGoogle Scholar
  35. 35.
    Hrapovic S, Majid E, Liu Y, Male K, Luong JHT. Metallic nanoparticle-carbon nanotube composites for electrochemical determination of explosive nitroaromatic compounds. Anal Chem. 2006;78:5504–12.CrossRefGoogle Scholar
  36. 36.
    Yuan C-X, Fan Y-R, Zhang T, Guo H-X, Zhang J-X, Wang Y-L, et al. A new electrochemical sensor of nitroaromatic compound based on three-dimensional porous Pt-Pd nanoparticles supported by graphene-multiwalled carbon nanotube composite. Biosens Bioelectron. 2014;58:85–91.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Shao-Hua Chiu
    • 1
  • Ya-Ling Su
    • 1
  • Anh V. T. Le
    • 1
  • Shu-Hua Cheng
    • 1
  1. 1.Department of Applied ChemistryNational Chi Nan UniversityPuliTaiwan

Personalised recommendations