Advertisement

Analytical and Bioanalytical Chemistry

, Volume 410, Issue 25, pp 6489–6495 | Cite as

Spectrofluorometric determination of berberine using a novel Au nanocluster with large Stokes shift

  • Aoli Wen
  • Xiaoxiao Peng
  • Pingping Zhang
  • Yunfei Long
  • Huiming Gong
  • Qingru Xie
  • Ming Yue
  • Shu Chen
Research Paper

Abstract

Berberine hydrochloride (BHC), a natural isoquinoline alkaloid, is widely applied as a an agent in traditional Chinese medicine. Almost all the traditional methods for BHC detection require complicated preprocessing steps or expensive instruments. In this article, we report a simple, rapid, sensitive, and selective method for BHC detection using fluorescent gold nanoclusters (F-AuNCs) as the fluorescent probe with a large Stokes shift of 237 nm. The F-AuNCs prepared with citrate-stabilized stannous chloride and hydrogen tetrachloroaurate(III) as raw materials in an aqueous medium display strong and stable fluorescence at 566 nm. When F-AuNCs are mixed with BHC, the fluorescence of F-AuNCs is effectively quenched. Under optimized conditions, this method allows sensitive and selective measurements of BHC in a concentration ranging from 1.0 × 10-6 to 1.0 × 10-4 mol L-1 with a detection limit of 7.5 × 10-8 mol L-1, which is relatively low among reported spectral methods. This method provides excellent selectivity for the detection of BHC against inorganic anions and natural amino acids. In addition, the BHC content in two different types of berberine tablets was successfully determined by this method and the results showed high accuracy.

Graphical Abstract

Keywords

Berberine hydrochloride Gold nanoclusters Fluorescent Stokes shift 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (nos 51502088, 21275047, 21445008), the Hunan Provincial Natural Science Foundation of China (nos 2016JJ3058, 2016JJ5005), the Research Foundation of Education Department of Hunan Province (no. 17B091), the Graduate Innovation Project of the Hunan University of Science and Technology (CX2017B619), and the Foundation of Science and Technology on Transient Impact Laboratory (No. 614260601010317).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Supplementary material

216_2018_1246_MOESM1_ESM.pdf (225 kb)
ESM 1 (PDF 224 kb)

References

  1. 1.
    Yang XM, Wang JS, Luo J, Kong LY. One-step large-scale preparative isolation of isoquinoline alkaloids from Rhizoma Coptidis chinensis by polyamide column chromatography and their quantitative structure-retention relationship analysis. J Liq Chromatogr Relat Technol. 2012;35(13):1842–52.Google Scholar
  2. 2.
    Domadia PN, Bhunia A, Sivaraman J, Swarup S, Dasgupta D. Berberine targets assembly of Escherichia coli cell division protein FtsZ. Biochemistry. 2008;47(10):3225–34.CrossRefPubMedGoogle Scholar
  3. 3.
    Hsieh YS, Kuo WH, Lin TW, Chang HR, Lin TH, Chen PN. Protective effects of berberine against low-density lipoprotein (LDL) oxidation and oxidized LDL-induced cytotoxicity on endothelial cells. J Agric Food Chem. 2007;55(25):10437–45.CrossRefPubMedGoogle Scholar
  4. 4.
    Ovádeková R, Jantová S, Letasiová S, Štepánek I, Labuda J. Nanostructured electrochemical DNA biosensors for detection of the effect of berberine on DNA from cancer cells. Anal Bioanal Chem. 2006;386(7-8):2055–62.CrossRefPubMedGoogle Scholar
  5. 5.
    Xue Y, Xiong J, Shi HL, Liu Y, Qing L. In vitro metabolic study of Rhizoma coptidis extract using liver microsomes immobilized on magnetic nanoparticles. Anal Bioanal Chem. 2013;405(27):8807–17.CrossRefPubMedGoogle Scholar
  6. 6.
    Liu Y, Yu H, Zhang C, Cheng Y, Hu L, Meng X. Protective effects of berberine on radiation-induced lung injury via intercellular adhesion molecular-1 and transforming growth factor-beta-1 in patients with lung cancer. Eur J Cancer. 2008;44(16):2425–32.CrossRefPubMedGoogle Scholar
  7. 7.
    Feng P, Huang CZ, Li YF. Determination of berberine by measuring the enhanced total internal reflected fluorescence at water/tetrachloromethane interface in the presence of sodium dodecyl benzene sulfonate. Anal Bioanal Chem. 2003;376(6):868–72.CrossRefPubMedGoogle Scholar
  8. 8.
    Tian X, Li Z, Lin Y, Chen M, Pan G, Huang C. Study on the PK profiles of magnoflorine and its potential interaction in Cortex phellodendri decoction by LC-MS/MS. Anal Bioanal Chem. 2014;406(3):841–9.CrossRefPubMedGoogle Scholar
  9. 9.
    Liu R, Yang J, Wu X, Sun C. Study on the resonance light scattering spectrum of berberine-cetyltrimethylammonium bromide system and the determination of nucleic acids at nanogram levels. Spectrochim Acta Part A. 2002;58(3):457–65.CrossRefGoogle Scholar
  10. 10.
    Lin SJ, Tseng HH, Wen KC, Suen TT. Determination of gentiopicroside, mangiferin, palmatine, berberine, baicalin, wogonin and glycyrrhizin in the traditional Chinese medicinal preparation sann-joong-kuey-jian-tang by high-performance liquid chromatography. J Chromatogr A. 1996;730(1-2):17–23.CrossRefPubMedGoogle Scholar
  11. 11.
    Wu TY, Chang FR, Liou JR, Lo IW, Chung TC, Lee LY. Rapid HPLC quantification approach for detection of active constituents in modern combinatorial formula, San-Huang-Xie-Xin-Tang (SHXXT). Front Pharmacol. 2016;7:374–88.PubMedPubMedCentralGoogle Scholar
  12. 12.
    Yuan ZW, Leung EL, Fan XX, Zhou H, Ma WZ, Liu L. Quantitative evaluation of berberine subcellular distribution and cellular accumulation in non-small cell lung cancer cells by UPLC-MS/MS. Talanta. 2015;144(24):20–8.CrossRefPubMedGoogle Scholar
  13. 13.
    Ban LN, Hai-Tang XU, Yuan-Jin XU. Determination of berberine hydrochloride, matrine and baicalin in Guilin Watermelon Frost by capillary electrophoresis. Chin J Instrum Anal. 2008;27(11):1217–20.Google Scholar
  14. 14.
    Song Z, Zhao T, Wang L, Xiao Z. Chemiluminescence flow sensor for berberine with immobilized reagents. Bioorg Med Chem. 2001;9(7):1701–5.CrossRefPubMedGoogle Scholar
  15. 15.
    Xing WL, He XW. Prediction of the selectivity coefficients of a berberine selective electrode using artificial neural networks. Anal Chim Acta. 1997;349(1):283–6.CrossRefGoogle Scholar
  16. 16.
    Zhang XB, Guo CC, Chen SH, Shen GL, Yu RQ. Synthesis of glycosylated porphyrins as neutral ionophores for a berberine-sensitive electrode. Fresenius J Anal Chem. 2001;369(5):422–7.CrossRefPubMedGoogle Scholar
  17. 17.
    Shao PL, Zhuo Y, Zhong FL, Jiang TL, Yan S. Resonance Rayleigh scattering study on the interaction of gold nanoparticles with berberine hydrochloride and its analytical application. Anal Chim Acta. 2006;572(2):283–9.CrossRefGoogle Scholar
  18. 18.
    Pang XB, Huang CZ. A selective and sensitive assay of berberine using total internal reflected resonance light scattering technique with fluorescein at the water/1,2-dichloroethane interface. J Pharm Biomed Anal. 2004;35(1):185–91.CrossRefPubMedGoogle Scholar
  19. 19.
    Ling J, Sang Y, Huang CZ. Visual colorimetric detection of berberine hydrochloride with silver nanoparticles. J Pharm Biomed Anal. 2008;47(4-5):860–4.CrossRefPubMedGoogle Scholar
  20. 20.
    Hu Z, Xie M, Yang D, Chen D, Jian J, Li H. A simple, fast, and sensitive colorimetric assay for visual detection of berberine in human plasma by NaHSO4-optimized gold nanoparticles. RSC Adv. 2017;7(55):34746–54.CrossRefGoogle Scholar
  21. 21.
    Liu Y, Huang CZ, Li YF. Fluorescence assay based on preconcentration by a self-ordered ring using berberine as a model analyte. Anal Chem. 2002;74(21):5564–8.CrossRefPubMedGoogle Scholar
  22. 22.
    Cao M, Liu M, Cao C, Xia Y, Bao L, Jin Y. A simple fluorescence quenching method for berberine determination using water-soluble CdTe quantum dots as probes. Spectrochim Acta Part A. 2010;75(3):1043–6.CrossRefGoogle Scholar
  23. 23.
    Liang S, Kuang Y, Ma F, Chen S, Long Y. A sensitive spectrofluorometric method for detection of berberine hydrochloride using Ag nanoclusters directed by natural fish sperm DNA. Biosens. Bioelectron. 2016;85(13):758–63.CrossRefPubMedGoogle Scholar
  24. 24.
    Zhang XB, Li ZZ, Guo CC, Chen SH, Shen GL, Yu RQ. Porphyrin-metalloporphyrin composite based optical fiber sensor for the determination of berberine. Anal Chim Acta. 2001;439(1):65–71.CrossRefGoogle Scholar
  25. 25.
    Liu WH, Wang Y, Tang JH, Shen GL, Yu RQ. An optical fiber sensor for berberine based on immobilized 1,4-bis(naphth[2,1-d]oxazole-2-yl)benzene in a new copolymer. Talanta. 1998;46(4):679–88.CrossRefPubMedGoogle Scholar
  26. 26.
    Wang Y, Liu W, Wang K, Shen G, Yu R. Optical fiber sensor for berberine based on fluorescence quenching of 2-(4-diphenylyl)-6-phenylbenzoxazole. Fresenius J Anal Chem. 1998;360(6):702–6.CrossRefGoogle Scholar
  27. 27.
    Liu H, Mei G, Chen S, Long Y, et al. Anal Methods. 2017;9(21):1–10.CrossRefGoogle Scholar
  28. 28.
    Kuang Y, Liang S, Ma F, Chen S, Long Y. Silver nanoclusters stabilized with denatured fish sperm DNA and the application on trace mercury ions detection. Luminescence. 2017;32(4):674–9.CrossRefPubMedGoogle Scholar
  29. 29.
    Fu L, Li C, Li Y, Chen S, Long Y. Simultaneous determination of iodide and bromide using a novel LSPR fluorescent Ag nanocluster probe. Sens Actuators B. 2017;240:315–21.CrossRefGoogle Scholar
  30. 30.
    Shang L, Dong S, Nienhaus GU. Ultra-small fluorescent metal nanoclusters: Synthesis and biological applications. Nano Today. 2011;6(4):401–18.CrossRefGoogle Scholar
  31. 31.
    Tao Y, Li M, Ren J, Qu X. Metal nanoclusters: novel probes for diagnostic and therapeutic applications. Chem Soc Rev. 2015;44(23):8636–63.CrossRefPubMedGoogle Scholar
  32. 32.
    Jin R, Zeng C, Zhou M, Chen Y. Atomically precise colloidal metal nanoclusters and nanoparticles: fundamentals and opportunities. Chem Rev. 2016;116(18):10346–413.CrossRefPubMedGoogle Scholar
  33. 33.
    Cheng CH, Huang HY, Talite MJ, Chou WC, Yeh JM, Yuan CT. A facile method to prepare “green” nano-phosphors with a large Stokes-shift and solid-state enhanced photophysical properties based on surface-modified gold nanoclusters. J Colloid Interface Sci. 2017;508(16):105–11.CrossRefPubMedGoogle Scholar
  34. 34.
    Shishino Y, Yonezawa T, Kawai K, Nishihara H. Molten matrix sputtering synthesis of water-soluble luminescent Au nanoparticles with a large Stokes shift. Chem Commun. 2010;46(38):7211–3.CrossRefGoogle Scholar
  35. 35.
    Chen H, Tang YH, Lin WY. Recent progress in the fluorescent probes for the specific imaging of small molecular weight thiols in living cells. Trends Anal Chem. 2016;76(14):166–81.CrossRefGoogle Scholar
  36. 36.
    Chen S, Kuang Y, Zhang P, Huang Y, Wen A, Zeng X. A Dual-functional spectroscopic probe for simultaneous monitoring Cu2+ and Hg2+ ions by two different sensing nature based on novel fluorescent gold nanoclusters. Sens Actuators B. 2017;253(32):283–91.CrossRefGoogle Scholar
  37. 37.
    Shichibu Y, Konishi K. HCl-Induced nuclearity convergence in diphosphine-protected ultrasmall gold clusters: a novel synthetic route to “magic-number” Au13 clusters. Small. 2010;6(11):1216–20.CrossRefPubMedGoogle Scholar
  38. 38.
    Shibu ES, Pradeep T. Quantum clusters in cavities: trapped Au15 in cyclodextrins. Chem Mater. 2011;23(4):989–99.CrossRefGoogle Scholar
  39. 39.
    Bian P, Zhou J, Liu Y, Ma Z. One-step fabrication of intense red fluorescent gold nanoclusters and their application in cancer cell imaging. Nanoscale. 2013;5(13):6161–6.CrossRefPubMedGoogle Scholar
  40. 40.
    Kong Y, Chen J, Gao F, Brydson R, Johnson B, Heath G. Near-infrared fluorescent ribonuclease-A-encapsulated gold nanoclusters: preparation, characterization, cancer targeting and imaging. Nanoscale. 2013;5(3):1009–17.CrossRefPubMedGoogle Scholar
  41. 41.
    Santiago-González B, Vázquez-Vázquez C, Blanco-Varela MC, Martinho JMG, Ramallo-López JM, Requejo FG. Synthesis of water-soluble gold clusters in nanosomes displaying robust photoluminescence with very large Stokes shift. J Colloid Interface Sci. 2015;455:154–62.CrossRefPubMedGoogle Scholar
  42. 42.
    Link S, Elsayed MA. Optical properties and ultrafast dynamics of metallic nanocrystals. Annu Rev Phys Chem. 2003;54(54):331–66.CrossRefPubMedGoogle Scholar
  43. 43.
    Buffat PA, Flüeli M, Spycher R, Stadelmann P, Borel JP. Crystallographic structure of small gold particles studied by high-resolution electron microscopy. Faraday Discuss. 1991;92(3):173–87.CrossRefGoogle Scholar
  44. 44.
    Shao N, Zhang Y, Cheung S, Yang R, Chan W. Copper ion-selective fluorescent sensor based on the inner filter effect using a spiropyran derivative. Anal Chem. 2005;77(22):7294–303.CrossRefPubMedGoogle Scholar
  45. 45.
    Kubista M, Sjöback R, Eriksson S, Bo A. Experimental correction for the inner-filter effect in fluorescence spectra. Analyst. 1994;119(3):417–9.CrossRefGoogle Scholar
  46. 46.
    Ma F, Sheng L, Peng Y, Chen S, Long Y. Copper ion detection using novel silver nanoclusters stabilized with amido black 10B. Anal Bioanal Chem. 2016;408(12):3239–46.CrossRefPubMedGoogle Scholar
  47. 47.
    Würth C, Geissler D, Behnke T, Kaiser M. Critical review of the determination of photoluminescence quantum yields of luminescent reporters. Anal. Bioanal Chem. 2015;407(1):59–78.CrossRefGoogle Scholar
  48. 48.
    Hu YJ, Liu Y, Zhang LX, Zhao RM, Qu SS. Studies of interaction between colchicine and bovine serum albumin by fluorescence quenching method. J Mol Struct. 2005;750(1–3):174–8.CrossRefGoogle Scholar
  49. 49.
    Wu F, Xiang Y, Wu Y, Xie F. Study of interaction of a fluorescent probe with DNA. Luminescence. 2009;129(11):1286–91.CrossRefGoogle Scholar
  50. 50.
    Ling J, Sang Y, Huang CZ. Visual colorimetric detection of berberine hydrochloride with silver nanoparticles. J Pharm Biomed Anal. 2008;47(4):860–4.CrossRefPubMedGoogle Scholar
  51. 51.
    Shao PL, Zhuo Y, Zhong FL, Shi Y. Resonance Rayleigh scattering study on the interaction of gold nanoparticles with berberine hydrochloride and its analytical application. Anal Chim Acta. 2006;572(2):283–9.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Aoli Wen
    • 1
  • Xiaoxiao Peng
    • 1
  • Pingping Zhang
    • 1
  • Yunfei Long
    • 1
  • Huiming Gong
    • 1
  • Qingru Xie
    • 1
  • Ming Yue
    • 1
  • Shu Chen
    • 1
  1. 1.Key Laboratory of Theoretical Organic Chemistry and Function Molecule of Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, Hunan Provincial Key Lab of Advanced Materials for New Energy Storage and Conversion, School of Chemistry and Chemical EngineeringHunan University of Science and TechnologyXiangtanChina

Personalised recommendations