Analytical and Bioanalytical Chemistry

, Volume 410, Issue 24, pp 6321–6330 | Cite as

Methodical studies of the simultaneous determination of anions and cations by IC×CE–MS using arsenic species as model analytes

  • Andrea Beutner
  • Sebastian Karl Piendl
  • Stefan Wert
  • Frank-Michael MatysikEmail author
Research Paper


The separation of the constituents of complex sample mixtures is a challenging task in analytical chemistry. Multidimensional separation systems are widely used to enhance the peak capacity. The comprehensive hyphenation of ion chromatography (IC) and capillary electrophoresis (CE) is promising because the two most important instrumental techniques in ion analysis are combined. In this report a new configuration for capillary anion chromatography is presented enabling the simultaneous IC×CE analysis of anions and cations using a switching valve. Electrospray ionization mass spectrometry (MS) was used for detection. A mixture of organic and inorganic arsenic species served as a model system. The coupling of anion chromatography to CE–MS was done via a modulator enabling periodical injections of the IC effluent into the CE. The injection parameters of the modulator were studied taking into account the complex transport situation.

Graphical abstract


Two-dimensional separation Capillary electrophoresis Ion chromatography Electrospray ionization Mass spectrometry Arsenic speciation 


Compliance with ethical standards

This article does not contain any studies with human participants or animals.

Conflict of interest

The authors declare that they have no conflict of interests.


  1. 1.
    Brudin SS, Shellie RA, Haddad PR, Schoenmakers PJ. Comprehensive two-dimensional liquid chromatography: ion chromatography×reversed-phase liquid chromatography for separation of low-molar-mass organic acids. J Chromatogr A. 2010;1217(43):6742–6.CrossRefPubMedGoogle Scholar
  2. 2.
    Jandera P. Comprehensive two-dimensional liquid chromatography—practical impacts of theoretical considerations. A review. Open Chem. 2012;10(3):844–75.CrossRefGoogle Scholar
  3. 3.
    Opekar F, Coufal P, Štulík K. Rapid capillary zone electrophoresis along short separation pathways and its use in some hyphenated systems: a critical review. Chem Rev. 2009;109(9):4487–99.CrossRefPubMedGoogle Scholar
  4. 4.
    Dallüge J, Beens J, Brinkman UAT. Comprehensive two-dimensional gas chromatography: a powerful and versatile analytical tool. J Chromatogr A. 2003;1000(1):69–108.CrossRefPubMedGoogle Scholar
  5. 5.
    Phillips JB, Beens J. Comprehensive two-dimensional gas chromatography: a hyphenated method with strong coupling between the two dimensions. J Chromatogr A. 1999;856(1):331–47.CrossRefPubMedGoogle Scholar
  6. 6.
    Cacciola F, Russo M, Mondello L, Dugo P. Chapter 16 - comprehensive two-dimensional liquid chromatography. In: Haddad PR, Poole CF, Riekkola M-L, editors. Liquid chromatography (second edition). New York: Elsevier; 2017. p. 403–15.CrossRefGoogle Scholar
  7. 7.
    Bedani F, Schoenmakers PJ, Janssen H-G. Theories to support method development in comprehensive two-dimensional liquid chromatography – a review. J Sep Sci. 2012;35(14):1697–711.CrossRefPubMedGoogle Scholar
  8. 8.
    Jandera P. Column selectivity for two-dimensional liquid chromatography. J Sep Sci. 2006;29(12):1763–83.CrossRefPubMedGoogle Scholar
  9. 9.
    Navarro-Reig M, Jaumot J, Baglai A, Vivó-Truyols G, Schoenmakers PJ, Tauler R. Untargeted comprehensive two-dimensional liquid chromatography coupled with high-resolution mass spectrometry analysis of rice metabolome using multivariate curve resolution. Anal Chem. 2017;89(14):7675–83.CrossRefPubMedGoogle Scholar
  10. 10.
    Gottschlich N, Jacobson SC, Culbertson CT, Ramsey JM. Two-dimensional electrochromatography/capillary electrophoresis on a microchip. Anal Chem. 2001;73(11):2669–74.CrossRefPubMedGoogle Scholar
  11. 11.
    Jooß K, Hühner J, Kiessig S, Moritz B, Neusüß C. Two-dimensional capillary zone electrophoresis–mass spectrometry for the characterization of intact monoclonal antibody charge variants, including deamidation products. Anal Bioanal Chem. 2017;409(26):6057–67.CrossRefPubMedGoogle Scholar
  12. 12.
    Kohl FJ, Sánchez-Hernández L, Neusüß C. Capillary electrophoresis in two-dimensional separation systems: techniques and applications. Electrophoresis. 2015;36(1):144–58.CrossRefPubMedGoogle Scholar
  13. 13.
    Ramsey JD, Jacobson SC, Culbertson CT, Ramsey JM. High-efficiency, two-dimensional separations of protein digests on microfluidic devices. Anal Chem. 2003;75(15):3758–64.CrossRefPubMedGoogle Scholar
  14. 14.
    Sydes D, Kler PA, Hermans M, Huhn C. Zero-dead-volume interfaces for two-dimensional electrophoretic separations. Electrophoresis. 2016;37(22):3020–4.CrossRefPubMedGoogle Scholar
  15. 15.
    Bushey MM, Jorgenson JW. Automated instrumentation for comprehensive two-dimensional high-performance liquid chromatography of proteins. Anal Chem. 1990;62(2):161–7.CrossRefPubMedGoogle Scholar
  16. 16.
    Beutner A, Kochmann S, Mark JJP, Matysik F-M. Two-dimensional separation of ionic species by hyphenation of capillary ion chromatography × capillary electrophoresis–mass spectrometry. Anal Chem. 2015;87(6):3134–8.CrossRefPubMedGoogle Scholar
  17. 17.
    Bushey MM, Jorgenson JW. Automated instrumentation for comprehensive two-dimensional high-performance liquid chromatography/capillary zone electrophoresis. Anal Chem. 1990;62(10):978–84.CrossRefGoogle Scholar
  18. 18.
    Ranjbar L, Gaudry AJ, Breadmore MC, Shellie RA. Online comprehensive two-dimensional ion chromatography × capillary electrophoresis. Anal Chem. 2015;87(17):8673–8.CrossRefPubMedGoogle Scholar
  19. 19.
    Chambers AG, Mellors JS, Henley WH, Ramsey JM. Monolithic integration of two-dimensional liquid chromatography−capillary electrophoresis and electrospray ionization on a microfluidic device. Anal Chem. 2011;83(3):842–9.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Giddings JC. Two-dimensional separations: concept and promise. Anal Chem. 1984;56:1258A–70A.CrossRefPubMedGoogle Scholar
  21. 21.
    Ranjbar L, Foley JP, Breadmore MC. Multidimensional liquid-phase separations combining both chromatography and electrophoresis – a review. Anal Chim Acta. 2017;950(Supplement C):7–31.CrossRefPubMedGoogle Scholar
  22. 22.
    Mellors JS, Black WA, Chambers AG, Starkey JA, Lacher NA, Ramsey JM. Hybrid capillary/microfluidic system for comprehensive online liquid chromatography-capillary electrophoresis-electrospray ionization-mass spectrometry. Anal Chem. 2013;85(8):4100–6.CrossRefPubMedGoogle Scholar
  23. 23.
    Wang T, Ma J, Wu S, Yuan H, Zhang L, Liang Z, et al. Integrated platform of capillary isoelectric focusing, trypsin immobilized enzyme microreactor and nanoreversed-phase liquid chromatography with mass spectrometry for online protein profiling. Electrophoresis. 2011;32(20):2848–56.CrossRefPubMedGoogle Scholar
  24. 24.
    Ye L, Wang X, Han J, Gao F, Xu L, Xiao Z, et al. Two dimensional separations of human urinary protein digest using a droplet-interfaced platform. Anal Chim Acta. 2015;863(Supplement C):86–94.CrossRefPubMedGoogle Scholar
  25. 25.
    Hooker TF, Jorgenson JWA. Transparent flow gating interface for the coupling of microcolumn LC with CZE in a comprehensive two-dimensional system. Anal Chem. 1997;69(20):4134–42.CrossRefGoogle Scholar
  26. 26.
    Lemmo AV, Jorgenson JW. Transverse flow gating interface for the coupling of microcolumn LC with CZE in a comprehensive two-dimensional system. Anal Chem. 1993;65(11):1576–81.CrossRefGoogle Scholar
  27. 27.
    Stevenson PR, Dunlap BE, Powell PS, Petersen BV, Hatch CJ, Chan H, et al. Simultaneous chromatography and electrophoresis: two-dimensional planar separations. Anal Bioanal Chem. 2013;405(10):3085–9.CrossRefPubMedGoogle Scholar
  28. 28.
    Cummins PM, Rochfort KD, O’Connor BF. Ion-exchange chromatography: basic principles and application. In: Walls D, Loughran ST, editors. Protein chromatography: methods and protocols. New York: Springer New York; 2017. p. 209–23.CrossRefGoogle Scholar
  29. 29.
    Kar S, Dasgupta PK. Direct coupling of ion chromatography with suppressed conductometric capillary electrophoresis. J Microcolumn Sep. 1996;8(8):561–8.CrossRefGoogle Scholar
  30. 30.
    Rokushika S, Qiu ZY, Hatano H. Micro column ion chromatography with a hollow fibre suppressor. J Chromatogr A. 1983;260:81–7.CrossRefGoogle Scholar
  31. 31.
    Sedyohutomo A, Lim LW, Takeuchi T. Development of packed-column suppressor system for capillary ion chromatography and its application to environmental waters. J Chromatogr A. 2008;1203(2):239–42.CrossRefPubMedGoogle Scholar
  32. 32.
    Grundmann M, Matysik F-M. Fast capillary electrophoresis–time-of-flight mass spectrometry using capillaries with inner diameters ranging from 75 to 5 μm. Anal Bioanal Chem. 2011;400(1):269–78.CrossRefPubMedGoogle Scholar
  33. 33.
    Kelly RT, Wang C, Rausch SJ, Lee CS, Tang K. Pneumatic microvalve-based hydrodynamic sample injection for high-throughput, quantitative zone electrophoresis in capillaries. Anal Chem. 2014;86(13):6723–9.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Moini M, Martinez B. Ultrafast capillary electrophoresis/mass spectrometry with adjustable porous tip for a rapid analysis of protein digest in about a minute. Rapid Commun Mass Spectrom. 2014;28(3):305–10.CrossRefPubMedGoogle Scholar
  35. 35.
    Niegel C, Pfeiffer SA, Grundmann M, Arroyo-Abad U, Mattusch J, Matysik F-M. Fast separations by capillary electrophoresis hyphenated to electrospray ionization time-of-flight mass spectrometry as a tool for arsenic speciation analysis. Analyst. 2012;137(8):1956–62.CrossRefPubMedGoogle Scholar
  36. 36.
    Matysik F-M. Capillary batch injection – a new approach for sample introduction into short-length capillary electrophoresis with electrochemical detection. Electrochem Commun. 2006;8(6):1011–5.CrossRefGoogle Scholar
  37. 37.
    Komorowicz I, Barałkiewicz D. Arsenic and its speciation in water samples by high performance liquid chromatography inductively coupled plasma mass spectrometry—last decade review. Talanta. 2011;84(2):247–61.CrossRefPubMedGoogle Scholar
  38. 38.
    Niegel C, Matysik F-M. Analytical methods for the determination of arsenosugars—a review of recent trends and developments. Anal Chim Acta. 2010;657(2):83–99.CrossRefPubMedGoogle Scholar
  39. 39.
    Grundmann M, Matysik F-M. Analyzing small samples with high efficiency: capillary batch injection–capillary electrophoresis–mass spectrometry. Anal Bioanal Chem. 2012;404(6):1713–21.CrossRefPubMedGoogle Scholar
  40. 40.
    Francisco KJM, do Lago CL. A compact and high-resolution version of a capacitively coupled contactless conductivity detector. Electrophoresis. 2009;30(19):3458–64.CrossRefPubMedGoogle Scholar
  41. 41.
    Kochmann S, Matysik F-M. Hyphenation of capillary high-performance ion-exchange chromatography with mass spectrometry using sheath-flow electrospray ionization. Rapid Commun Mass Spectrom. 2014;28(23):2670–80.CrossRefPubMedGoogle Scholar
  42. 42.
    Murphy RE, Schure MR, Foley JP. Effect of sampling rate on resolution in comprehensive two-dimensional liquid chromatography. Anal Chem. 1998;70(8):1585–94.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Andrea Beutner
    • 1
  • Sebastian Karl Piendl
    • 1
  • Stefan Wert
    • 1
  • Frank-Michael Matysik
    • 1
    Email author
  1. 1.Institute of Analytical Chemistry, Chemo- and BiosensorsUniversity of RegensburgRegensburgGermany

Personalised recommendations