Skip to main content
Log in

Rapid and sensitive SERS detection of the cytokine tumor necrosis factor alpha (tnf-α) in a magnetic bead pull-down assay with purified and highly Raman-active gold nanoparticle clusters

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Tumor necrosis factor alpha (TNF-α) is a cytokine with significance in early diagnosis of cardiovascular diseases, obesity and insulin resistance. We demonstrate the proof of concept for a rapid and sensitive detection of TNF-α using a magnetic bead pull-down assay in combination with surface-enhanced Raman scattering (SERS). The use of purified and highly SERS-active small clusters of gold nanoparticles (AuNP) provides the high sensitivity of the assay with a limit of detection of ca. 1 pg/mL. Continuous density gradient centrifugation was employed for separating the very bright silica-encapsulated AuNP dimers and trimers from the significantly weaker AuNP monomers. Negative control experiments with other cytokines (IL-6, IL-8) and bovine serum albumin (BSA) confirm the high specificity of the assay, but indicate also space for future improvements by further reducing non-specific binding between proteins and the SERS nanotags. The multiplexing potential of this SERS-based detection scheme is exemplarily demonstrated by using a set of three spectrally distinct and highly SERS-active AuNP clusters with unique spectral barcodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kleemann R, Zadelaar S, Kooistra T. Cytokines and atherosclerosis: a comprehensive review of studies in mice. Cardiovasc Res. 2008;79(3):360–76. https://doi.org/10.1093/cvr/cvn120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Borges MC, Takeuti TD, Terra GA, Ribeiro BM, Rodrigues-Junior V, Crema E. Comparative analysis of immunological profiles in women undergoing conventional and single-port laparoscopic cholecystectoy. Arq Bras Cir Dig. 2016;29(3):164–9. https://doi.org/10.1590/0102-6720201600030009.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Hu J, Wang S, Wang L, Li F, Pingguan-Murphy B, Lu TJ, et al. Advances in paper-based point-of-care diagnostics. Biosens Bioelectron. 2014;54:585–97. https://doi.org/10.1016/j.bios.2013.10.075.

    Article  CAS  PubMed  Google Scholar 

  4. Saito K, Kobayashi D, Sasaki M, Araake H, Kida T, Yagihashi A, et al. Detection of human serum tumor necrosis factor-alpha in healthy donors, using a highly sensitive immuno-PCR assay. Clin Chem. 1999;45(5):665–9.

    CAS  PubMed  Google Scholar 

  5. Aydin EB, Aydin M, Sezginturk MK. A highly sensitive immunosensor based on ITO thin films covered by a new semi-conductive conjugated polymer for the determination of TNF alpha in human saliva and serum samples. Biosens Bioelectron. 2017;97:169–76. https://doi.org/10.1016/j.bios.2017.05.056.

    Article  CAS  PubMed  Google Scholar 

  6. Worsley GJ, Attree SL, Noble JE, Horgan AM. Rapid duplex immunoassay for wound biomarkers at the point-of-care. Biosens Bioelectron. 2012;34(1):215–20. https://doi.org/10.1016/j.bios.2012.02.005.

    Article  CAS  PubMed  Google Scholar 

  7. Nie SM, Emory SR. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science. 1997;275(5303):1102–6.

    Article  CAS  PubMed  Google Scholar 

  8. Lane LA, Qian XM, Nie SM. SERS nanoparticles in medicine: from label-free detection to spectroscopic tagging. Chem Rev. 2015;115(19):10489–529. https://doi.org/10.1021/acs.chemrev.5b00265.

    Article  CAS  PubMed  Google Scholar 

  9. Fleischmann M, Hendra PJ, McQuillan AJ. Raman-spectra of pyridine adsorbed at a silver electrode. Chem Phys Lett. 1974;26(2):163–6.

    Article  CAS  Google Scholar 

  10. Cialla D, Huebner U, Schneidewind H, Moeller R, Popp J. Probing innovative microfabricated substrates for their reproducible SERS activity. ChemPhysChem. 2008;9(5):758–62. https://doi.org/10.1002/cphc.200700705.

    Article  CAS  PubMed  Google Scholar 

  11. Wilson R. The use of gold nanoparticles in diagnostics and detection. Chem Soc Rev. 2008;37(9):2028–45. https://doi.org/10.1039/b712179m.

    Article  CAS  PubMed  Google Scholar 

  12. Banholzer MJ, Millstone JE, Qin LD, Mirkin CA. Rationally designed nanostructures for surface-enhanced Raman spectroscopy. Chem Soc Rev. 2008;37(5):885–97. https://doi.org/10.1039/b710915f.

    Article  CAS  PubMed  Google Scholar 

  13. Zhang JT, Li XL, Sun XM, Li YD. Surface enhanced Raman scattering effects of silver colloids with different shapes. J Phys Chem B. 2005;109(25):12544–8. https://doi.org/10.1021/JP050471d.

    Article  CAS  PubMed  Google Scholar 

  14. Barbosa S, Agrawal A, Rodriguez-Lorenzo L, Pastoriza-Santos I, Alvarez-Puebla RA, Kornowski A, et al. Tuning size and sensing properties in colloidal gold Nanostars. Langmuir. 2010;26(18):14943–50. https://doi.org/10.1021/la102559e.

    Article  CAS  PubMed  Google Scholar 

  15. Schlücker S. Surface-enhanced Raman spectroscopy: concepts and chemical applications. Angew Chem Int Ed. 2014;53(19):4756–95. https://doi.org/10.1002/anie.201205748.

    Article  CAS  Google Scholar 

  16. Hu JW, Zhao B, Xu WQ, Fan YG, Li B, Ozaki Y. Simple method for preparing controllably aggregated silver particle films used as surface-enhanced Raman scattering active substrates. Langmuir. 2002;18(18):6839–44. https://doi.org/10.1021/la02051a.

    Article  CAS  Google Scholar 

  17. Lai YM, Sun SQ, He T, Schlücker S, Wang YL. Raman-encoded microbeads for spectral multiplexing with SERS detection. RSC Adv. 2015;5(18):13762–7. https://doi.org/10.1039/c4ra16163g.

    Article  CAS  Google Scholar 

  18. Lai YM, Li F, Sun SQ. Controlled surface enhanced resonance Raman scattering (SERRS) in biological environment. Integr Ferroelectr. 2013;146(1):88–98. https://doi.org/10.1080/10584587.2013.789736.

    Article  CAS  Google Scholar 

  19. Bishnoi SW, Y-j L, Tibudan M, Huang Y, Nakaema M, Swarup V, et al. SERS biodetection using gold-silica nanoshells and nitrocellulose membranes. Anal Chem. 2011;83(11):4053–60. https://doi.org/10.1021/ac103195e.

    Article  CAS  PubMed  Google Scholar 

  20. Wang Y, Tang LJ, Jiang JH. Surface-enhanced Raman spectroscopy-based, homogeneous, multiplexed immunoassay with antibody-fragments-decorated gold nanoparticles. Anal Chem. 2013;85(19):9213–20. https://doi.org/10.1021/ac4019439.

    Article  CAS  PubMed  Google Scholar 

  21. Steinigeweg D, Schütz M, Salehi M, Schlücker S. Fast and cost-effective purification of gold nanoparticles in the 20-250 nm size range by continuous density gradient centrifugation. Small. 2011;7(17):2443–8. https://doi.org/10.1002/smll.201100663.

    Article  CAS  PubMed  Google Scholar 

  22. Gellner M, Koempe K, Schlücker S. Multiplexing with SERS labels using mixed SAMs of Raman reporter molecules. Anal Bioanal Chem. 2009;394(7):1839–44. https://doi.org/10.1007/s00216-009-2868-8.

    Article  CAS  PubMed  Google Scholar 

  23. Bastus NG, Comenge J, Puntes V. Kinetically controlled seeded growth synthesis of citrate-stabilized gold nanoparticles of up to 200 nm: size focusing versus Ostwald ripening. Langmuir. 2011;27(17):11098–105. https://doi.org/10.1021/la201938u.

    Article  CAS  PubMed  Google Scholar 

  24. Wong YJ, Zhu L, Teo WS, Tan YW, Yang Y, Wang C, et al. Revisiting the Stober method: in homogeneity in silica shells. J Am Chem Soc. 2011;133(30):11422–5. https://doi.org/10.1021/ja203316q.

    Article  CAS  PubMed  Google Scholar 

  25. Salehi M, Schneider L, Ströbel P, Marx A, Packeisen J, Schlücker S. Two-color SERS microscopy for protein co-localization in prostate tissue with primary antibody-protein A/G-gold nanocluster conjugates. Nanoscale. 2014;6(4):2361–7. https://doi.org/10.1039/c3nr05890e.

    Article  CAS  PubMed  Google Scholar 

  26. Willets KA, Van Duyne RP. Localized surface plasmon resonance spectroscopy and sensing. Annu Rev Phys Chem. 2007;58:267–97. https://doi.org/10.1146/annurev.physchem.58.032806.104607.

    Article  CAS  PubMed  Google Scholar 

  27. Zhang Y, Li X, Xue B, Kong X, Liu X, Tu L, et al. A facile and general route to synthesize silica-coated SERS tags with the enhanced signal intensity. Sci Rep. 2015;5 https://doi.org/10.1038/srep14934.

  28. Zhang Y, Walkenfort B, Yoon JH, Schlücker S, Xie W. Gold and silver nanoparticle monomers are non-SERS-active: a negative experimental study with silica-encapsulated Raman-reporter-coated metal colloids. Phys Chem Chem Phys. 2015;17(33):21120–6. https://doi.org/10.1039/c4cp05073h.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Y.M.L. thanks the China Scholarship Council (CSC) for the financial support of her research visit at the University of Duisburg-Essen. YML also thanks the Fundamental Research Funds from the Central Universities (FRF-TP-15-012A2) for the financial support. SS and YW acknowledge financial support from the German Research Foundation (DFG, WA 3369/1-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuling Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(PDF 1374 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lai, Y., Schlücker, S. & Wang, Y. Rapid and sensitive SERS detection of the cytokine tumor necrosis factor alpha (tnf-α) in a magnetic bead pull-down assay with purified and highly Raman-active gold nanoparticle clusters. Anal Bioanal Chem 410, 5993–6000 (2018). https://doi.org/10.1007/s00216-018-1218-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-018-1218-0

Keywords

Navigation