Analytical and Bioanalytical Chemistry

, Volume 410, Issue 23, pp 5931–5939 | Cite as

Ionic liquids on optical sensors for gaseous carbon dioxide

  • M. D. Fernández-RamosEmail author
  • M. L. Aguayo-López
  • I. Pérez de Vargas-Sansalvador
  • L. F. Capitán-Vallvey
Research Paper


This work presents a study on the influence of eight different ionic liquids (ILs) in the composition of dry membranes used for gaseous CO2 optical sensing. The presence of CO2 causes a displacement of a colorimetric pH indicator toward its acid form that increases the emission intensity of the luminophore by an inner filter process. The influence of ILs in the membrane on the stability and dynamic behavior—usually the main drawbacks of these sensors—of the membranes is studied. The characterization of the different membranes prepared was carried out and the discussion of the results is presented. In all cases, the response and recovery times improved considerably, with the best case being response times of only 10 s and recovery times of 48 s, compared to response and recovery times of 41 and 100 s, respectively, for membranes without IL. The useful life of the detection membranes is also considerably longer than that of membranes that do not include IL, at least 292 days in the best case. The sensing membrane without luminophore and only containing the pH indicator is proposed for the color-based measurement of CO2 using a digital camera for possible use in food-packaging technology.

Graphical abstract


Ionic liquids Carbon dioxide Phosphorescent sensor Color measurements Intelligent packaging 



This study was supported by projects from the Spanish MINECO (CTQ2013-44545-R and CTQ2016-78754-C2-1-R)


The project was partially supported by European Regional Development Funds (ERDF) as well as by the Unidad de Excelencia de Química aplicada a biomedicina y medioambiente of the University of Granada.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.


  1. 1.
    Olah GA, Goeppert A, Prakash GKS. Chemical recycling of carbon dioxide to methanol and dimethyl ether: from greenhouse gas to renewable, environmentally carbon neutral fuels and synthetic hydrocarbons. The Journal of Organic Chemistry. 2009;74:487–98.CrossRefPubMedGoogle Scholar
  2. 2.
    Ganesh I. Electrochemical conversion of carbon dioxide into renewable fuel chemicals—the role of nanomaterials and the commercialization. Renew Sust Energ Rev. 2016;59:1269–97.CrossRefGoogle Scholar
  3. 3.
    Zilberman Y, Sonkusale SR. Microfluidic optoelectronic sensor for salivary diagnostics of stomach cancer. Biosens Bioelectron. 2015;67:465–71.CrossRefPubMedGoogle Scholar
  4. 4.
    Neethirajan S, Jayas DS, Sadistap S. Carbon dioxide (CO2) sensors for the Agri-food IndustryGÇöA review. Food Bioprocess Technol. 2009;2:115–21.CrossRefGoogle Scholar
  5. 5.
    Puligundla P, Jung J, Ko S. Carbon dioxide sensors for intelligent food packaging applications. Food Control. 2012;25:328–33.CrossRefGoogle Scholar
  6. 6.
    Mills A, Hodgen S. Fluorescent carbon dioxide indicators. Top Fluoresc Spectrosc. 2005;9:119–61.CrossRefGoogle Scholar
  7. 7.
    Ando M. Recent advances in optochemical sensors for the detection of H2, O2, O3, CO, CO2 and H2O in air TrAC. Trends Anal Chem. 2006;25:937–48.CrossRefGoogle Scholar
  8. 8.
    Baldini F, Giannetti A, Mencaglia AA, Trono C. Fiber optic sensors for biomedical applications. Curr Anal Chem. 2008;4:378–90.CrossRefGoogle Scholar
  9. 9.
    Amao Y, Nakamura N. Optical CO2 sensor with the combination of colorimetric change of [alpha]-naphtholphthalein and internal reference fluorescent porphyrin dye. Sensors Actuators B. 2004;100:351–5.CrossRefGoogle Scholar
  10. 10.
    Chu CS, Lo YL. Fiber-optic carbon dioxide sensor based on fluorinated xerogels doped with HPTS. Sensors Actuators B. 2008;129:120–5.CrossRefGoogle Scholar
  11. 11.
    Malins C, MacCraith BD. Dye-doped organically modified silica glass for fluorescence based carbon dioxide gas detection. Analyst. 1998;123:2373–6.CrossRefGoogle Scholar
  12. 12.
    Perez de Vargas Sansalvador IM, Carvajal MA, Roldan-Muñoz OM, Banqueri J, Fernandez-Ramos MD, Capitan-Vallvey LF. Phosphorescent sensing of carbon dioxide based on secondary inner-filter quenching. Anal Chim Acta. 2009;655:66–74.CrossRefPubMedGoogle Scholar
  13. 13.
    Ertekin K, Klimant I, Neurauter G, Wolfbeis OS. Characterization of a reservoir-type capillary optical microsensor for pCO2 measurements. Talanta. 2003;59:261–7.CrossRefPubMedGoogle Scholar
  14. 14.
    Neurauter G, Kilmant O, Wolfbeis OS. Fiber-optic microsensor for high resolution pCO2 sensing in marin environment. Fresenius J Anal Chem. 2000;366:481–7.CrossRefPubMedGoogle Scholar
  15. 15.
    Aguayo-Lopez ML, Capitán-Vallvey LF, Fernandez-Ramos MD. Optical sensor for carbon dioxide gas determination, characterization and improvements. Talanta. 2014;126:196–201.CrossRefPubMedGoogle Scholar
  16. 16.
    Kirchner B. Ionic Liquids. Springer. 2010.Google Scholar
  17. 17.
    Zhang S, Sun N, He X, Lu X, Zhang X. Physical properties of ionic liquids: database and evaluation. J Phys Chem Ref Data. 2006;35:1475–517.CrossRefGoogle Scholar
  18. 18.
    Lemus J s, Da SF, Palomar J, Carvalho PJ, Coutinho JAP. Solubility of carbon dioxide in encapsulated ionic liquids. Sep Purif Technol. 2018;196:41–6.CrossRefGoogle Scholar
  19. 19.
    Saptal VB, Bhanage BM. Current advances in heterogeneous catalysts for the synthesis of cyclic carbonates from carbon dioxide. Curr Opin Green Sustain Chem. 2017;3:1–10.CrossRefGoogle Scholar
  20. 20.
    Mohshim DF, Mukhtar H, Man Z. A study on carbon dioxide removal by blending the ionic liquid in membrane synthesis. Sep Purif Technol. 2018;196:20–6.CrossRefGoogle Scholar
  21. 21.
    Wu J, Mu L, Zhu J, Chen Y, Yin X, Feng X, et al. Turning the solubility and lubricity of ionic liquids by absorbing CO2. Tribol Int. 2018;121:223–30.CrossRefGoogle Scholar
  22. 22.
    Liu J f, Jiang G b, Liu J f, Jonsson JA. Application of ionic liquids in analytical chemistry TrAC. Trends Anal Chem. 2005;24:20–7.CrossRefGoogle Scholar
  23. 23.
    Wasilewski T, Gobicki J, Kamysz W. Prospects of ionic liquids application in electronic and bioelectronic nose instruments TrAC. Trends Anal Chem. 2017;93:23–36.CrossRefGoogle Scholar
  24. 24.
    Lu X, Zhou J, Zhao Y, Qiu Y, Li J. Room temperature ionic liquid based polystyrene nanofibers with superhydrophobicity and conductivity produced by electrospinning. Chem Mater. 2008;20:3420–4.CrossRefGoogle Scholar
  25. 25.
    Li Z, Liu H, Liu Y, He P, Li J. A room-temperature ionic-liquid-templated proton-conducting gelatinous electrolyte. J Phys Chem B. 2004;108:17512–8.CrossRefGoogle Scholar
  26. 26.
    Forzani ES, Lu D, Leright MJ, Aguilar AD, Tsow F, Iglesias RA, et al. Hybrid electrochemical colorimetric sensing platform for detection of explosives. J Am Chem Soc. 2009;131:1390–1.CrossRefPubMedGoogle Scholar
  27. 27.
    Behera K, Pandey S, Kadyan A, Pandey S. Ionic liquid-based optical and electrochemical carbon dioxide sensors. Sensors. 2015;15:30487–503.CrossRefPubMedGoogle Scholar
  28. 28.
    Oter O, Ertekin K, Derinkuyu S. Ratiometric sensing of CO2 in ionic liquid modified ethyl cellulose matrix. Talanta. 2008;76:557–63.CrossRefPubMedGoogle Scholar
  29. 29.
    Aydogdu S, Ertekin K, Suslu A, Ozdemir M, Celik E, Cocen U. Optical CO2 sensing with ionic liquid doped electrospun nanofibers. J Fluoresc. 2010:1–7.Google Scholar
  30. 30.
    Borisov SM, Waldhier MC, Klimant I, Wolfbeis OS. Optical carbon dioxide sensors based on silicone-encapsulated room-temperature ionic liquids. Chem Mater. 2007;19:6187–94.CrossRefGoogle Scholar
  31. 31.
    Muginova SV, Myasnikova DA, Kazarian SG, Shekhovtsova TN. Applications of ionic liquids for the development of optical chemical sensors and biosensors. Anal Sci. 2017;33:261–74.CrossRefPubMedGoogle Scholar
  32. 32.
    Akhmetshina AI, Gumerova OR, Atlaskin AA, Petukhov AN, Sazanova TS, Yanbikov NR, et al. Permeability and selectivity of acid gases in supported conventional and novel imidazolium-based ionic liquid membranes. Sep Purif Technol. 2017;176:92–106.CrossRefGoogle Scholar
  33. 33.
    Vieira MO, Monteiro WF, Ligabue R, Seferin M, Chaban VV, Andreeva NA, et al. Ionic liquids composed of linear amphiphilic anions: synthesis, physicochemical characterization, hydrophilicity and interaction with carbon dioxide. J Mol Liq. 2017;241:64–73.CrossRefGoogle Scholar
  34. 34.
    Bernard FL, Dalla VF, Rojas MF, Ligabue R, Vieira MO, Costa EM, et al. Anticorrosion protection by AmineGÇôIonic liquid mixtures: experiments and simulations. J Chem Eng Data. 2016;61:1803–10.CrossRefGoogle Scholar
  35. 35.
    Gao L, Yang X, Shu Y, Chen X, Wang J. Ionic liquid-based slab optical waveguide sensor for the detection of ammonia in human breath. J Colloid Interface Sci. 2018;512:819–25.CrossRefPubMedGoogle Scholar
  36. 36.
    Perez de Vargas-Sansalvador I, Erenas MM, Diamond D, Quilty B, Capitan-Vallvey LF. Water based-ionic liquid carbon dioxide sensor for applications in the food industry. Sensors Actuators B. 2017;253:302–9.CrossRefGoogle Scholar
  37. 37.
    Carvajal MA, Perez de Vargas Sansalvador IM, Palma AJ, Fernandez-Ramos MD, Capitan-Vallvey LF. Hand-held optical instrument for CO2 in gas phase based on sensing film coating optoelectronic elements. Sensors Actuators B Chem. 2010;B144:232–8.CrossRefGoogle Scholar
  38. 38.
    Mills A, Chang Q, McMurray N. Equilibrium studies on colorimetric plastic film sensors for carbon dioxide. Anal Chem. 1992;64:1383–9.CrossRefGoogle Scholar
  39. 39.
    Mills A, Chang Q. Fluorescence plastic thin-film sensor for carbon dioxide. Analyst. 1993;118:839–43.CrossRefGoogle Scholar
  40. 40.
    Neurauter G, Klimant I, Wolfbeis OS. Microsecond lifetime-based optical carbon dioxide sensor using luminescence resonance energy transfer. Anal Chim Acta. 1999;382:67–75.CrossRefGoogle Scholar
  41. 41.
    Mills A, Chang Q. Colorimetric polymer film sensors for dissolved carbon dioxide. Sensors Actuators B Chem. 1994;21:83–9.CrossRefGoogle Scholar
  42. 42.
    Nakamura N, Amao Y. Optical sensor for carbon dioxide combining colorimetric change of a pH indicator and a reference luminescent dye. Anal Bioanal Chem. 2003;376:642–6.CrossRefPubMedGoogle Scholar
  43. 43.
    Schilderman AM, Raeissi S, Peters CJ. Solubility of carbon dioxide in the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide fluid Ph. Equilibria. 2007;260:19–22.Google Scholar
  44. 44.
    Soriano AN, Doma BT, Li MH. Solubility of carbon dioxide in 1-ethyl-3-methylimidazolium tetrafluoroborate. J Chem Eng Data. 2008;53:2550–5.CrossRefGoogle Scholar
  45. 45.
    Qin K, Wang K, Li Y, Kong F, Wang T. High-pressure phase behavior of 1-ethyl-3-methylimidazolium tetrafluoroborate and carbon dioxide system. RSC Adv. 2015;5:32416–20.CrossRefGoogle Scholar
  46. 46.
    Crowhurst L, Mawdsley PR, Perez-Arlandis JM, Salter PA, Welton T. Solvent-solute interactions in ionic liquids. Phys Chem Chem Phys. 2003;5:2790–4.CrossRefGoogle Scholar
  47. 47.
    Cadena C, Anthony JL, Shah JK, Morrow TI, Brennecke JF, Maginn EJ. Why is CO2 so soluble in imidazolium-based ionic liquids? J Am Chem Soc. 2004;126:5300–8.CrossRefPubMedGoogle Scholar
  48. 48.
    Borchert NB, Kerry JP, Papkovsky DB. A CO2 sensor based on Pt-porphyrin dye and FRET scheme for food packaging applications. Sensors Actuators B Chem. 2013;176:157–65.CrossRefGoogle Scholar
  49. 49.
    Hamer M, Lazaro-Martinez JM, Rezzano IN. Fluorescent responsive chlorophyllide-hydrogel for carbon dioxide detection. Sensors Actuators B Chem. 2016;237:905–11.CrossRefGoogle Scholar
  50. 50.
    Ali R, Lang T, Saleh SM, Meier RJ, Wolfbeis OS. Optical sensing scheme for carbon dioxide using a Solvatochromic probe. Anal Chem. 2011;83:2846–51.CrossRefPubMedGoogle Scholar
  51. 51.
    Robertson GL. Food packaging: principles and practice. Boca Raton, FL, US: CRC Press; 2012.Google Scholar
  52. 52.
    Bültzingslöwen C v, McEvoy AK, McDonagh C, MacCraith BD, Klimant I, Christian K, et al. Sol-gel based optical carbon dioxide sensor employing dual luminophore referencing for application in food packaging technology. Analyst. 2002;127:1478–83.CrossRefGoogle Scholar
  53. 53.
    Hong SI, Park WS. Use of color indicators as an active packaging system for evaluating kimchi fermentation. J Food Eng. 2000;46:67–72.CrossRefGoogle Scholar
  54. 54.
    Nopwinyuwong A, Trevanich S, Suppakul P. Development of a novel colorimetric indicator label for monitoring freshness of intermediate-moisture dessert spoilage. Talanta. 2010;81:1126–32.CrossRefPubMedGoogle Scholar
  55. 55.
    Wang J, Wen Z, Yang B, Yang X. Optical carbon dioxide sensor based on fluorescent capillary array. Results in Physics. 2017;7:323–6.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • M. D. Fernández-Ramos
    • 1
    Email author
  • M. L. Aguayo-López
    • 1
  • I. Pérez de Vargas-Sansalvador
    • 1
  • L. F. Capitán-Vallvey
    • 1
  1. 1.ECsens. Department of Analytical ChemistryUniversity of GranadaGranadaSpain

Personalised recommendations