Analytical and Bioanalytical Chemistry

, Volume 410, Issue 23, pp 5731–5739 | Cite as

On determining the power of digital PCR experiments

  • Matthijs VynckEmail author
  • Jo Vandesompele
  • Olivier Thas
Paper in Forefront


The experimental design that will be carried out to evaluate a nucleic acid quantification hypothesis determines the cost and feasibility of digital polymerase chain reaction (digital PCR) studies. Experiment design involves the calculation of the number of technical measurement replicates and the determination of the characteristics of those replicates, and this in accordance with the capabilities of the available digital PCR platform. Available digital PCR power analyses suffer from one or more of the following limitations: narrow scope, unrealistic assumptions, no sufficient detail for replication, lack of source code and user-friendly software. Here, we discuss the nature of six parameters that affect the statistical power, i.e., desired effect size, total number of partitions, fraction of positive partitions, number of replicate measurements, between-replicate variance, and significance level. We also show to what extent these parameters affect power, and argue that careful design of experiments is needed to achieve the desired power. A web tool, dPowerCalcR, that allows interactive calculation of statistical power and optimization of the experimental design is available.


Digital PCR Power Design Replicates Variance 


Compliance with ethical standards

Conflict of interest

Biogazelle provided support in the form of salaries for JV, but did not have any additional role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript. MV and OT have no conflict of interest to declare.

Supplementary material

216_2018_1212_MOESM1_ESM.pdf (773 kb)
(PDF 772 KB)


  1. 1.
    Baker M. Digital PCR hits its stride. Nat Methods 2012;9(6):541–4.CrossRefGoogle Scholar
  2. 2.
    Hall Sedlak R, Jerome KR. The potential advantages of digital PCR for clinical virology diagnostics. Expert Rev Mol Diagn 2014;14(4):501–7.CrossRefPubMedGoogle Scholar
  3. 3.
    Morisset D, Štebih D, Milavec M, Gruden K, žel J. Quantitative analysis of food and feed samples with droplet digital PCR. PLoS One 2013;8(5):e62583.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Henrich TJ, Gallien S, Li JZ, Pereyra F, Kuritzkes DR. Low-level detection and quantitation of cellular HIV-1 DNA and 2-LTR circles using droplet digital pcr. J Virol Methods 2012;186(1):68–72.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Kiselinova M, Pasternak AO, De Spiegelaere W, Vogelaers D, Berkhout B, Vandekerckhove L. Comparison of droplet digital PCR and seminested real-time PCR for quantification of cell-associated HIV-1 RNA. PLoS One 2014;9(1):e85999.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Whale AS, Bushell CA, Grant PR, Cowen S, Gutierrez-Aguirre I, O’Sullivan DM, Zel J, Milavec M, Foy CA, Nastouli E. Detection of rare drug resistance mutations by digital PCR in a human influenza A virus model system and clinical samples. J Clin Microbiol 2016;54(2):392–400.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    El Khattabi LA, Rouillac-Le Sciellour C, Le Tessier D, Luscan A, Coustier A, Porcher R, Bhouri R, Nectoux J, Sérazin V, Quibel T. Could digital PCR be an alternative as a non-invasive prenatal test for trisomy 21: a proof of concept study. PLoS One 2016;11(5):e0155009.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Colquhoun D. An investigation of the false discovery rate and the misinterpretation of p-values. Roy Soc Open Sci 2014;1(3):140216.CrossRefGoogle Scholar
  9. 9.
    Whale AS, Huggett JF, Cowen S, Speirs V, Shaw J, Ellison S, Foy CA, Scott DJ. Comparison of microfluidic digital PCR and conventional quantitative PCR for measuring copy number variation. Nucleic Acids Res 2012;40(11):e82.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Evans MI, Wright DA, Pergament E, Cuckle HS, Nicolaides KH. Digital PCR for noninvasive detection of aneuploidy: power analysis equations for feasibility. Fetal Diagn Ther 2012;31(4):244–7.CrossRefPubMedGoogle Scholar
  11. 11.
    Jones M, Williams J, Gärtner K, Phillips R, Hurst J, Frater J. Low copy target detection by Droplet Digital PCR through application of a novel open access bioinformatic pipeline,‘definetherain’. J Virol Methods 2014;202:46–53.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Lievens A, Jacchia S, Kagkli D, Savini C, Querci M. Measuring digital PCR quality: performance parameters and their optimization. PLoS One 2016;11(5):e0153317.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Vynck M, Vandesompele J, Nijs N, Menten B, De Ganck A, Thas O. Flexible analysis of digital PCR experiments using generalized linear mixed models. Biomol Detect Quantif 2016;9:1–13.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Trypsteen W, Vynck M, De Neve J, Bonczkowski P, Kiselinova M, Malatinkova E, Vervisch K, Thas O, Vandekerckhove L, De Spiegelaere W. ddpcRquant: threshold determination for single channel droplet digital PCR experiments. Anal Bioanal Chem 2015;407(19):5827–34.CrossRefPubMedGoogle Scholar
  15. 15.
    Pinheiro LB, Coleman VA, Hindson CM, Herrmann J, Hindson BJ, Bhat S, Emslie KR. Evaluation of a droplet digital polymerase chain reaction format for DNA copy number quantification. Analytical chemistry 2011;84(2):1003–11.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Corbisier P, Pinheiro L, Mazoua S, Kortekaas AM, Chung PY, Gerganova T, Roebben G, Emons H, Emslie K. DNA Copy number concentration measured by digital and droplet digital quantitative PCR using certified reference materials. Analytical Bioanal Chem 2015;407(7):1831–40.CrossRefGoogle Scholar
  17. 17.
    Vynck M, Thas O. Reducing bias in digital PCR quantification experiments: the importance of appropriately modeling volume variability. Anal Chem 2018;90(11):6540–7.CrossRefPubMedGoogle Scholar
  18. 18.
    2018. R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing Vienna Austria.
  19. 19.
    Jacobs BK, Goetghebeur E, Clement L. Impact of variance components on reliability of absolute quantification using digital PCR. BMC Bioinforma 2014;15(1):283.CrossRefGoogle Scholar
  20. 20.
    Majumdar N, Wessel T, Marks J. Digital PCR modeling for maximal sensitivity dynamic range and measurement precision. PLoS One 2015;10(3):e0118833.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Huggett JF, Garson JA, Whale AS. Digital PCR and its potential application to microbiology. Molecular microbiology: diagnostic principles and practice. In: Persing DH, Tenover FC, Hayden RT, Ieven M, Miller MB, Nolte FS, Tang Y, and van Belkum A, editors. Washington, DC: ASM Press; 2016. p. 49–57.Google Scholar
  22. 22.
    Vynck M, Trypsteen W, Thas O, Vandekerckhove L, De Spiegelaere W. The future of digital polymerase chain reaction in virology. Mol Diagn Ther 2016;20(5):437–47.CrossRefPubMedGoogle Scholar
  23. 23.
    Noble WS. How does multiple testing correction work? Nat Biotechnol 2000;27(12):1135–7.CrossRefGoogle Scholar
  24. 24.
    Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Stat Soc B Met 1995;57(1):289–300.Google Scholar
  25. 25.
    Holm S. A simple sequentially rejective multiple test procedure. Scand J Stat 1979;6(2):65–70.Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Matthijs Vynck
    • 1
    Email author
  • Jo Vandesompele
    • 2
    • 3
    • 4
    • 5
  • Olivier Thas
    • 1
    • 6
    • 7
    • 8
  1. 1.Department of Data Analysis and Mathematical ModellingGhent UniversityGhentBelgium
  2. 2.Center for Medical GeneticsGhent UniversityGhentBelgium
  3. 3.Bioinformatics Institute Ghent: from Nucleotides to Networks (BIG N2N)Ghent UniversityGhentBelgium
  4. 4.Cancer Research Institute GhentGhent UniversityGhentBelgium
  5. 5.BiogazelleZwijnaardeBelgium
  6. 6.Bioinformatics Institute Ghent: from Nucleotides to Networks (BIG N2N)Ghent UniversityGhentBelgium
  7. 7.Cancer Research Institute GhentGhent UniversityGhentBelgium
  8. 8.National Institute for Applied Statistics Research Australia (NIASRA), School of Mathematics and Applied StatisticsUniversity of WollongongWollongongAustralia

Personalised recommendations