Advertisement

Analytical and Bioanalytical Chemistry

, Volume 410, Issue 25, pp 6343–6352 | Cite as

Instrumental analysis of microplastics—benefits and challenges

  • Sven Huppertsberg
  • Thomas P. Knepper
Feature Article

Abstract

There is a high demand for easy, cheap, comparable, and robust methods for microplastic (MP) analysis, due to the ever-increasing public and scientific interest in (micro-) plastic pollution in the environment. Today, a multitude of methodologies for sampling, sample preparation, and analysis of MPs are in use. This feature article deals with the most prominent detection methods as well as with sampling strategies and sample preparation techniques. Special emphasis is on their benefits and challenges. Thus, spectroscopic methods, coupled with microscopy, require time-consuming sample preparation and extended measurement times, whereas thermo-analytical methods are faster but lack the ability to determine the size distribution in samples. To that effect, most of the described methods are applicable depending on the defined analytical question.

Graphical abstract

Keywords

Microplastic Spectrometry Thermo-analytical methods 

Notes

Funding information

The authors thank the BMBF for funding (FKZ: 02WRS1378D) the framing of the project Microplastics in the water cycle (MiWa).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Eubeler JP, Bernhard M, Knepper TP. Environmental biodegradation of synthetic polymers II. Biodegradation of different polymer groups. TrAC Trends Anal Chem. 2010;29(1):84–100.  https://doi.org/10.1016/j.trac.2009.09.005.CrossRefGoogle Scholar
  2. 2.
    Pirc U, Vidmar M, Mozer A, Kržan A. Emissions of microplastic fibers from microfiber fleece during domestic washing. Environ Sci Pollut Res Int. 2016;23(21):22206–11.  https://doi.org/10.1007/s11356-016-7703-0. CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Scherer C, Weber A, Lambert S, Wagner M. Interactions of microplastics with freshwater biota. In: Wagner M, Lambert S, editors. Freshwater Microplastics: Emerging Environmental Contaminants? Cham: Springer International Publishing; 2018. p. 153–80.CrossRefGoogle Scholar
  4. 4.
    Klein S, Worch E, Knepper TP. Occurrence and spatial distribution of microplastics in river shore sediments of the Rhine-main area in Germany. Environ. Sci. Technol. 2015;49(10):6070–6.  https://doi.org/10.1021/acs.est.5b00492.CrossRefPubMedGoogle Scholar
  5. 5.
    Rummel CD, Löder MGJ, Fricke NF, Lang T, Griebeler E-M, Janke M, et al. Plastic ingestion by pelagic and demersal fish from the North Sea and Baltic Sea. Mar Pollut Bull. 2016;102(1):134–41.  https://doi.org/10.1016/j.marpolbul.2015.11.043.CrossRefPubMedGoogle Scholar
  6. 6.
    Mani T, Hauk A, Walter U, Burkhardt-Holm P. Microplastics profile along the Rhine River. Sci Rep. 2015;5:17988.  https://doi.org/10.1038/srep17988. https://www.nature.com/articles/srep17988#supplementary-informationCrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Imhof HK, Laforsch C, Wiesheu AC, Schmid J, Anger PM, Niessner R, et al. Pigments and plastic in limnetic ecosystems: a qualitative and quantitative study on microparticles of different size classes. Water Res. 2016;98:64–74.  https://doi.org/10.1016/j.watres.2016.03.015.CrossRefPubMedGoogle Scholar
  8. 8.
    plasticeurope.de. Studie zu Produktion, Verarbeitung und Verwertung von Kunststoffen in Deutschland 2015. 2017.Google Scholar
  9. 9.
    Taylor ML, Gwinnett C, Robinson LF, Woodall LC. Plastic microfibre ingestion by deep-sea organisms. Sci Rep. 2016;6:33997.  https://doi.org/10.1038/srep33997.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Ferreira P, Fonte E, Soares ME, Carvalho F, Guilhermino L. Effects of multi-stressors on juveniles of the marine fish Pomatoschistus microps: gold nanoparticles, microplastics and temperature. Aquat Toxicol. 2016;170:89–103.  https://doi.org/10.1016/j.aquatox.2015.11.011.CrossRefPubMedGoogle Scholar
  11. 11.
    Schmidt C, Krauth T, Wagner S. Export of plastic debris by rivers into the sea. Environ Sci Technol. 2017;  https://doi.org/10.1021/acs.est.7b02368.CrossRefGoogle Scholar
  12. 12.
    Lenz R, Enders K, Stedmon CA, Mackenzie DMA, Nielsen TG. A critical assessment of visual identification of marine microplastic using Raman spectroscopy for analysis improvement. Mar Pollut Bull. 2015;100(1):82–91.  https://doi.org/10.1016/j.marpolbul.2015.09.026.CrossRefPubMedGoogle Scholar
  13. 13.
    Wesch C, Elert AM, Wörner M, Braun U, Klein R, Paulus M. Assuring quality in microplastic monitoring: about the value of clean-air devices as essentials for verified data. Sci Rep. 2017;7:5424.  https://doi.org/10.1038/s41598-017-05838-4.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Dekiff JH, Remy D, Klasmeier J, Fries E. Occurrence and spatial distribution of microplastics in sediments from Norderney. Environ Pollut. 2014;186:248–56.CrossRefPubMedGoogle Scholar
  15. 15.
    Cincinelli A, Scopetani C, Chelazzi D, Lombardini E, Martellini T, Katsoyiannis A, et al. Microplastic in the surface waters of the Ross Sea (Antarctica): occurrence, distribution and characterization by FTIR. Chemosphere. 2017;175:391–400.  https://doi.org/10.1016/j.chemosphere.2017.02.024.CrossRefPubMedGoogle Scholar
  16. 16.
    Enders K, Lenz R, Stedmon CA, Nielsen TG. Abundance, size and polymer composition of marine microplastics ≥10μm in the Atlantic Ocean and their modelled vertical distribution. Mar Pollut Bull. 2015;100(1):70–81.  https://doi.org/10.1016/j.marpolbul.2015.09.027.CrossRefPubMedGoogle Scholar
  17. 17.
    Doyle MJ, Watson W, Bowlin NM, Sheavly SB. Plastic particles in coastal pelagic ecosystems of the Northeast Pacific ocean. Mar Environ Res. 2011;71(1):41–52.  https://doi.org/10.1016/j.marenvres.2010.10.001.CrossRefPubMedGoogle Scholar
  18. 18.
    Imhof HK, Schmid J, Niessner R, Ivleva NP, Laforsch C. A novel, highly efficient method for the separation and quantification of plastic particles in sediments of aquatic environments. Limnol Oceanogr Methods. 2012;10(7):524–37.  https://doi.org/10.4319/lom.2012.10.524.CrossRefGoogle Scholar
  19. 19.
    Klein S, Dimzon IK, Eubeler J, Knepper TP. Analysis, occurrence, and degradation of microplastics in the aqueous environment. In: Wagner M, Lambert S, editors. Freshwater Microplastics: Emerging Environmental Contaminants? Cham: Springer International Publishing; 2018. p. 51–67.CrossRefGoogle Scholar
  20. 20.
    Wiesheu AC, Anger PM, Baumann T, Niessner R, Ivleva NP. Raman microspectroscopic analysis of fibers in beverages. Anal Methods. 2016;8(28):5722–5.  https://doi.org/10.1039/C6AY01184E.CrossRefGoogle Scholar
  21. 21.
    Ivleva NP, Wiesheu AC, Niessner R. Microplastic in aquatic ecosystems. Angew Chem Int Ed. 2017;56(7):1720–39.  https://doi.org/10.1002/anie.201606957.CrossRefGoogle Scholar
  22. 22.
    Ivleva NP, Wiesheu AC, Niessner R. Mikroplastik in aquatischen Ökosystemen. Angew Chem. 2017;129(7):1744–64.  https://doi.org/10.1002/ange.201606957.CrossRefGoogle Scholar
  23. 23.
    Löder MGJ, Kuczera M, Mintenig S, Lorenz C, Gerdts G. Focal plane array detector-based micro-Fourier-transform infrared imaging for the analysis of microplastics in environmental samples. Environ Chem. 2015;12(5):563–81.  https://doi.org/10.1071/EN14205.CrossRefGoogle Scholar
  24. 24.
    Harrison JP, Ojeda JJ, Romero-González ME. The applicability of reflectance micro-Fourier-transform infrared spectroscopy for the detection of synthetic microplastics in marine sediments. Sci Total Environ. 2012;416:455–63.  https://doi.org/10.1016/j.scitotenv.2011.11.078.CrossRefPubMedGoogle Scholar
  25. 25.
    Suaria G, Avio CG, Mineo A, Lattin GL, Magaldi MG, Belmonte G, et al. The Mediterranean Plastic Soup: synthetic polymers in Mediterranean surface waters. Sci Rep. 2016;6:37551.  https://doi.org/10.1038/srep37551. https://www.nature.com/articles/srep37551#supplementary-informationCrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Majewsky M, Bitter H, Eiche E, Horn H. Determination of microplastic polyethylene (PE) and polypropylene (PP) in environmental samples using thermal analysis (TGA-DSC). Sci Total Environ. 2016;568:507–11.  https://doi.org/10.1016/j.scitotenv.2016.06.017.CrossRefPubMedGoogle Scholar
  27. 27.
    Fries ED, Jens; Willmeyer Jana, Nuelle, Marie-Theres; Ebert, Martin; Remy, Dominique. Identification of polymer types and additives in marine microplastic particles using pyrolysis-GC/MS and scanning electron microscopy. Environ Sci: Processes Impacts 2013;15(1949).Google Scholar
  28. 28.
    Dümichen E, Eisentraut P, Bannick CG, Barthel A-K, Senz R, Braun U. Fast identification of microplastics in complex environmental samples by a thermal degradation method. Chemosphere. 2017;174(Supplement C):572–84.  https://doi.org/10.1016/j.chemosphere.2017.02.010.CrossRefPubMedGoogle Scholar
  29. 29.
    Duemichen E, Braun U, Senz R, Fabian G, Sturm H. Assessment of a new method for the analysis of decomposition gases of polymers by a combining thermogravimetric solid-phase extraction and thermal desorption gas chromatography mass spectrometry. J Chromatogr A. 2014;1354:117–28.  https://doi.org/10.1016/j.chroma.2014.05.057.CrossRefPubMedGoogle Scholar
  30. 30.
    Dimzon IKD, Knepper TP. Chapter 7- MALDI–TOF MS for characterization of synthetic polymers in aqueous environment. In: Fernandez-Alba AR, editor. Anal. Chem: Elsevier; 2012. p. 307–38.CrossRefGoogle Scholar
  31. 31.
    Weidner SM, Trimpin S. Mass spectrometry of synthetic polymers. Anal Chem. 2010;82(12):4811–29.  https://doi.org/10.1021/ac101080n.CrossRefPubMedGoogle Scholar
  32. 32.
    Rivas D, Ginebreda A, Pérez S, Quero C, Barceló D. MALDI-TOF MS imaging evidences spatial differences in the degradation of solid polycaprolactone diol in water under aerobic and denitrifying conditions. Sci Total Environ. 2016;566–567(Supplement C):27–33.  https://doi.org/10.1016/j.scitotenv.2016.05.090.CrossRefPubMedGoogle Scholar
  33. 33.
    Shim WJ, Song YK, Hong SH, Jang M. Identification and quantification of microplastics using Nile Red staining. Mar Pollut Bull. 2016;113(1):469–76.  https://doi.org/10.1016/j.marpolbul.2016.10.049.CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Hochschule FreseniusIdsteinGermany

Personalised recommendations