Advertisement

Analytical and Bioanalytical Chemistry

, Volume 410, Issue 21, pp 5313–5327 | Cite as

Comparison of μ-ATR-FTIR spectroscopy and py-GCMS as identification tools for microplastic particles and fibers isolated from river sediments

  • Andrea Käppler
  • Marten Fischer
  • Barbara M. Scholz-Böttcher
  • Sonja Oberbeckmann
  • Matthias Labrenz
  • Dieter Fischer
  • Klaus-Jochen Eichhorn
  • Brigitte Voit
Research Paper

Abstract

In recent years, many studies on the analysis of microplastics (MP) in environmental samples have been published. These studies are hardly comparable due to different sampling, sample preparation, as well as identification and quantification techniques. Here, MP identification is one of the crucial pitfalls. Visual identification approaches using morphological criteria alone often lead to significant errors, being especially true for MP fibers. Reliable, chemical structure-based identification methods are indispensable. In this context, the frequently used vibrational spectroscopic techniques but also thermoanalytical methods are established. However, no critical comparison of these fundamentally different approaches has ever been carried out with regard to analyzing MP in environmental samples. In this blind study, we investigated 27 single MP particles and fibers of unknown material isolated from river sediments. Successively micro-attenuated total reflection Fourier transform infrared spectroscopy (μ-ATR-FTIR) and pyrolysis gas chromatography-mass spectrometry (py-GCMS) in combination with thermochemolysis were applied. Both methods differentiated between plastic vs. non-plastic in the same way in 26 cases, with 19 particles and fibers (22 after re-evaluation) identified as the same polymer type. To illustrate the different approaches and emphasize the complementarity of their information content, we exemplarily provide a detailed comparison of four particles and three fibers and a critical discussion of advantages and disadvantages of both methods.

Keywords

Microplastics py-GCMS ATR FTIR Environmental samples Comparison Validation 

Notes

Acknowledgments

This work was part of the Leibniz Competition project “Microplastics as vector for microbial populations in the ecosystem of the Baltic Sea (MikrOMIK),” funded by the German Leibniz Association (grant number SAW-2014-IOW-2). Parts of this study were funded by the German Federal Ministry of Education and Research (BMBF 03F0734D) in the joint research project BASEMAN (JPI-Oceans microplastics projects). Furthermore, Andrea Käppler is thankful for financial support by the BONUS MICROPOLL project funded jointly by the EU and BMBF (03F0775A).

The authors want to thank Rica Wegner, Nicole Stollberg, and Oliver Biniasch (all formerly IOW) for the extraction and isolation of the particles and fibers. The technical assistance of Oliver Voigt (IPF) during ATR-FTIR measurements is also acknowledged.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

216_2018_1185_MOESM1_ESM.pdf (392 kb)
ESM 1 (PDF 392 kb)

References

  1. 1.
    Andrady AL. Microplastics in the marine environment. Mar Pollut Bull. 2011;62:1596–605.  https://doi.org/10.1016/j.marpolbul.2011.05.030.CrossRefPubMedGoogle Scholar
  2. 2.
    Hidalgo-Ruz V, Gutow L, Thompson RC, Thiel M. Microplastics in the marine environment: a review of the methods used for identification and quantification. Environ Sci Technol. 2012;46:3060–75.  https://doi.org/10.1021/es2031505.CrossRefPubMedGoogle Scholar
  3. 3.
    Ivleva NP, Wiesheu AC, Niessner R. Microplastic in aquatic ecosystems. Angew Chem Int Ed. 2017;56:1720–39.  https://doi.org/10.1002/anie.201606957.CrossRefGoogle Scholar
  4. 4.
    Eriksen M, Mason S, Wilson S, Box C, Zellers A, Edwards W, et al. Microplastic pollution in the surface waters of the Laurentian Great Lakes. Mar Pollut Bull. 2013;77:177–82.  https://doi.org/10.1016/j.marpolbul.2013.10.007.CrossRefPubMedGoogle Scholar
  5. 5.
    Song YK, Hong SH, Jang M, Han GM, Rani M, Lee J, et al. A comparison of microscopic and spectroscopic identification methods for analysis of microplastics in environmental samples. Mar Pollut Bull. 2015;93:202–9.  https://doi.org/10.1016/j.marpolbul.2015.01.015.CrossRefPubMedGoogle Scholar
  6. 6.
    Lenz R, Enders K, Stedmon CA, Mackenzie DMA, Nielsen TG. A critical assessment of visual identification of marine microplastic using Raman spectroscopy for analysis improvement. Mar Pollut Bull. 2015;100:82–91.  https://doi.org/10.1016/j.marpolbul.2015.09.026.CrossRefPubMedGoogle Scholar
  7. 7.
    Remy F, Collard F, Gilbert B, Compère P, Eppe G, Lepoint G. When microplastic is not plastic: the ingestion of artificial cellulose fibers by macrofauna living in Seagrass Macrophytodetritus. Environ Sci Technol. 2015;49:11158–66.  https://doi.org/10.1021/acs.est.5b02005.CrossRefPubMedGoogle Scholar
  8. 8.
    Rocha-Santos T, Duarte AC. A critical overview of the analytical approaches to the occurrence, the fate and the behavior of microplastics in the environment. Trends Anal Chem. 2015;65:47–53.  https://doi.org/10.1016/j.trac.2014.10.011.CrossRefGoogle Scholar
  9. 9.
    Dris R, Imhof H, Sanchez W, Gasperi J, Galgani F, Tassin B, et al. Beyond the ocean: contamination of freshwater ecosystems with (micro-)plastic particles. Environ Chem. 2015;12:539.  https://doi.org/10.1071/EN14172.CrossRefGoogle Scholar
  10. 10.
    Käppler A, Fischer D, Oberbeckmann S, Schernewski G, Labrenz M, Eichhorn KJ, et al. Analysis of environmental microplastics by vibrational microspectroscopy: FTIR, Raman or both? Anal Bioanal Chem. 2016;408:8377–91.  https://doi.org/10.1007/s00216-016-9956-3.CrossRefPubMedGoogle Scholar
  11. 11.
    Mani T, Hauk A, Walter U, Burkhardt-Holm P. Microplastics profile along the Rhine River. Sci Rep. 2015;5:1–7.  https://doi.org/10.1038/srep17988. CrossRefGoogle Scholar
  12. 12.
    Klein S, Worch E, Knepper TP. Occurrence and spatial distribution of microplastics in river shore sediments of the Rhine-Main Area in Germany. Environ Sci Technol. 2015;49:6070–6.  https://doi.org/10.1021/acs.est.5b00492.CrossRefPubMedGoogle Scholar
  13. 13.
    Imhof HK, Sigl R, Brauer E, Feyl S, Giesemann P, Klink S, et al. Spatial and temporal variation of macro-, meso- and microplastic abundance on a remote coral island of the Maldives, Indian Ocean. Mar Pollut Bull. 2017;116:340–7.  https://doi.org/10.1016/j.marpolbul.2017.01.010.CrossRefPubMedGoogle Scholar
  14. 14.
    Vianello A, Boldrin A, Guerriero P, Moschino V, Rella R, Sturaro A, et al. Microplastic particles in sediments of Lagoon of Venice, Italy: first observations on occurrence, spatial patterns and identification. Estuar Coast Shelf Sci. 2013;130:54–61.  https://doi.org/10.1016/j.ecss.2013.03.022.CrossRefGoogle Scholar
  15. 15.
    Harrison JP, Ojeda JJ, Romero-González ME. The applicability of reflectance micro-Fourier-transform infrared spectroscopy for the detection of synthetic microplastics in marine sediments. Sci Total Environ. 2012;416:455–63.  https://doi.org/10.1016/j.scitotenv.2011.11.078.CrossRefPubMedGoogle Scholar
  16. 16.
    Tagg AS, Sapp M, Harrison JP, Ojeda JJ. Identification and quantification of microplastics in wastewater using focal plane array-based reflectance micro-FT-IR imaging. Anal Chem. 2015;87:6032–40.  https://doi.org/10.1021/acs.analchem.5b00495.CrossRefPubMedGoogle Scholar
  17. 17.
    Ter Halle A, Jeanneau L, Martignac M, Jardé E, Pedrono B, Brach L, et al. Nanoplastic in the North Atlantic subtropical gyre. Environ Sci Technol. 2017;51:13689–97.  https://doi.org/10.1021/acs.est.7b03667.CrossRefPubMedGoogle Scholar
  18. 18.
    Frias JPGL, Otero V, Sobral P. Evidence of microplastics in samples of zooplankton from Portuguese coastal waters. Mar Environ Res. 2014;95:89–95.  https://doi.org/10.1016/j.marenvres.2014.01.001. CrossRefPubMedGoogle Scholar
  19. 19.
    Löder MGJ, Kuczera M, Mintenig S, Lorenz C, Gerdts G. Focal plane array detector-based micro-Fourier-transform infrared imaging for the analysis of microplastics in environmental samples. Environ Chem. 2015;12:563–81.  https://doi.org/10.1071/EN14205.CrossRefGoogle Scholar
  20. 20.
    Rummel CD, Löder MGJ, Fricke NF, Lang T, Griebeler EM, Janke M, et al. Plastic ingestion by pelagic and demersal fish from the North Sea and Baltic Sea. Mar Pollut Bull. 2016;102:134–41.  https://doi.org/10.1016/j.marpolbul.2015.11.043.CrossRefPubMedGoogle Scholar
  21. 21.
    Mintenig SM, Int-Veen I, Löder MGJ, Primpke S, Gerdts G. Identification of microplastic in effluents of waste water treatment plants using focal plane array-based micro-Fourier-transform infrared imaging. Water Res. 2017;108:365–72.  https://doi.org/10.1016/j.watres.2016.11.015.CrossRefPubMedGoogle Scholar
  22. 22.
    Bergmann M, Wirzberger V, Krumpen T, Lorenz C, Primpke S, Tekman MB, et al. High quantities of microplastic in Arctic deep-sea sediments from the HAUSGARTEN observatory. Environ Sci Technol. 2017;51:11000–10.  https://doi.org/10.1021/acs.est.7b03331.CrossRefPubMedGoogle Scholar
  23. 23.
    Matsuguma Y, Takada H, Kumata H, Kanke H, Sakurai S, Suzuki T, et al. Microplastics in sediment cores from Asia and Africa as indicators of temporal trends in plastic pollution. Arch Environ Contam Toxicol. 2017;73:230–9.  https://doi.org/10.1007/s00244-017-0414-9.CrossRefPubMedGoogle Scholar
  24. 24.
    Primpke S, Lorenz C, Rascher-Friesenhausen R, Gerdts G. An automated approach for microplastics analysis using focal plane array (FPA) FTIR microscopy and image analysis. Anal Methods. 2017;9:1499–511.  https://doi.org/10.1039/c6ay02476a.CrossRefGoogle Scholar
  25. 25.
    Majewsky M, Bitter H, Eiche E, Horn H. Determination of microplastic polyethylene (PE) and polypropylene (PP) in environmental samples using thermal analysis (TGA-DSC). Sci Total Environ. 2016;568:507–11.  https://doi.org/10.1016/j.scitotenv.2016.06.017.CrossRefPubMedGoogle Scholar
  26. 26.
    Dümichen E, Barthel A-K, Braun U, Bannick CG, Brand K, Jekel M, et al. Analysis of polyethylene microplastics in environmental samples, using a thermal decomposition method. Water Res. 2015;85:451–7.  https://doi.org/10.1016/j.watres.2015.09.002.CrossRefPubMedGoogle Scholar
  27. 27.
    Dümichen E, Eisentraut P, Bannick CG, Barthel A-K, Senz R, Braun U. Fast identification of microplastics in complex environmental samples by a thermal degradation method. Chemosphere. 2017;174:572–84.  https://doi.org/10.1016/j.chemosphere.2017.02.010.CrossRefPubMedGoogle Scholar
  28. 28.
    Challinor JM. Review: the development and applications of thermally assisted hydrolysis and methylation reactions. J Anal Appl Pyrolysis. 2001;61:3–34.CrossRefGoogle Scholar
  29. 29.
    Challinor JM. A pyrolysis-derivatisation-gas chromatography technique for the structural elucidation of some synthetic polymers. J Anal Appl Pyrolysis. 1989;16:323–33.CrossRefGoogle Scholar
  30. 30.
    Shadkami F, Helleur R. Recent applications in analytical thermochemolysis. J Anal Appl Pyrolysis. 2010;89:2–16.  https://doi.org/10.1016/j.jaap.2010.05.007.CrossRefGoogle Scholar
  31. 31.
    Antić VV, Antić MP, Kronimus A, Oing K, Schwarzbauer J. Quantitative determination of poly(vinylpyrrolidone) by continuous-flow off-line pyrolysis-GC/MS. J Anal Appl Pyrolysis. 2011;90:93–9.  https://doi.org/10.1016/j.jaap.2010.10.011.CrossRefGoogle Scholar
  32. 32.
    de Leeuw JW, de Leer EWB, Sinninghe Damsté JS, Schuyl PJW. Screening of anthropogenic compounds in polluted sediments and soils by flash evaporation/pyrolysis gas chromatography-mass spectrometry. Anal Chem. 1986;58:1852–7.CrossRefGoogle Scholar
  33. 33.
    Fabbri D, Tartari D, Trombini C. Analysis of poly(vinyl chloride) and other polymers in sediments and suspended matter of a coastal lagoon by pyrolysis-gas chromatography-mass spectrometry. Anal Chim Acta. 2000;413:3–11.  https://doi.org/10.1016/S0003-2670(00)00766-2.CrossRefGoogle Scholar
  34. 34.
    Fabbri D. Use of pyrolysis-gas chromatography/mass spectrometry to study environmental pollution caused by synthetic polymers: a case study: the Ravenna lagoon. J Anal Appl Pyrolysis. 2001;58–59:361–70.  https://doi.org/10.1016/S0165-2370(00)00170-4.CrossRefGoogle Scholar
  35. 35.
    Fabbri D, Trombini C, Vassura I. Analysis of polystyrene in polluted sediments by pyrolysis-gas chromatography-mass spectrometry. J Chromatogr Sci. 1998;36:600–4.CrossRefGoogle Scholar
  36. 36.
    Nuelle M-T, Dekiff JH, Remy D, Fries E. A new analytical approach for monitoring microplastics in marine sediments. Environ Pollut. 2014;184:161–9.  https://doi.org/10.1016/j.envpol.2013.07.027.CrossRefPubMedGoogle Scholar
  37. 37.
    Dekiff JH, Remy D, Klasmeier J, Fries E. Occurrence and spatial distribution of microplastics in sediments from Norderney. Environ Pollut. 2014;186:248–56.  https://doi.org/10.1016/j.envpol.2013.11.019.CrossRefPubMedGoogle Scholar
  38. 38.
    Fries E, Dekiff JH, Willmeyer J, Nuelle M-T, Ebert M, Remy D. Identification of polymer types and additives in marine microplastic particles using pyrolysis-GC/MS and scanning electron microscopy. Environ Sci Process Impacts. 2013;15:1949–56.  https://doi.org/10.1039/c3em00214d.CrossRefPubMedGoogle Scholar
  39. 39.
    Fischer M, Scholz-Böttcher BM. Simultaneous trace identification and quantification of common types of microplastics in environmental samples by pyrolysis-gas chromatography−mass spectrometry. Environ Sci Technol. 2017;51:5052–60.  https://doi.org/10.1021/acs.est.6b06362.CrossRefPubMedGoogle Scholar
  40. 40.
    Elert AM, Becker R, Duemichen E, Eisentraut P, Falkenhagen J, Sturm H, et al. Comparison of different methods for MP detection: what can we learn from them, and why asking the right question before measurements matters? Environ Pollut. 2017;231:1256–64.  https://doi.org/10.1016/j.envpol.2017.08.074.CrossRefPubMedGoogle Scholar
  41. 41.
    Imhof HK, Schmid J, Niessner R, Ivleva NP, Laforsch C. A novel, highly efficient method for the separation and quantification of plastic particles in sediments of aquatic environments. Limnol Oceanogr Methods. 2012;10:524–37.  https://doi.org/10.4319/lom.2012.10.524.CrossRefGoogle Scholar
  42. 42.
    Tsuge S, Ohtani H, Watanabe C. Pyrolysis—GC/MS data book of synthetic polymers. 1st ed. Oxford: Elsevier B.V.; 2011.Google Scholar
  43. 43.
    Mandelkern L, Alamo RG. Polyethylene, linear high-density. In: Mark JE, editor. Polymer data handbook. Oxford: Oxford University Press; 1991. p. 493–507.Google Scholar
  44. 44.
    Beyler CL, Hirschler MM. Thermal decomposition of polymers. In: Beyler CL, Custer RLP, Walton WD, John MJW, Drysdale D, John RJH, et al., editors. SFPE handbook of fire protection engineering, 3rd ed. National Fire Protection Association; 2005. p. 110–31.Google Scholar
  45. 45.
    Narita S, Ichinohe S, Enomoto S. Infrared spectrum of polyvinyl chloride. J Polym Sci. 1959;37:273–80.CrossRefGoogle Scholar
  46. 46.
    Stromberg RR, Straus S, Achhammer BG. Infrared spectra of thermally degraded poly(vinyl chloride). J Res Natl Bur Stand (1934). 1958;60:147–52.  https://doi.org/10.6028/jres.060.018. CrossRefGoogle Scholar
  47. 47.
    Tabb DL, Koenig JL. Fourier transform infrared study of plasticized and unplasticized poly(vinyl chloride). Macromolecules. 1975;8:929–34.  https://doi.org/10.1021/ma60048a043.CrossRefGoogle Scholar
  48. 48.
    González N, Fernández-Berridi MJ. Application of Fourier transform infrared spectroscopy in the study of interactions between PVC and plasticizers: PVC/plasticizer compatibility versus chemical structure of plasticizer. J Appl Polym Sci. 2006;101:1731–7.  https://doi.org/10.1002/app.23381.CrossRefGoogle Scholar
  49. 49.
    Ploeger R, Scalarone D, Chiantore O. The characterization of commercial artists’ alkyd paints. J Cult Herit. 2008;9:412–9.  https://doi.org/10.1016/j.culher.2008.01.007.CrossRefGoogle Scholar
  50. 50.
    Duce C, Della Porta V, Tiné MR, Spepi A, Ghezzi L, Colombini MP, et al. FTIR study of ageing of fast drying oil colour (FDOC) alkyd paint replicas. Spectrochim Acta A Mol Biomol Spectrosc. 2014;130:214–21.  https://doi.org/10.1016/j.saa.2014.03.123.CrossRefPubMedGoogle Scholar
  51. 51.
    Gunasekaran S, Anbalagan G, Pandi S. Raman and infrared spectra of carbonates of calcite structure. J Raman Spectrosc. 2006;37:892–9.  https://doi.org/10.1002/jrs.1518.CrossRefGoogle Scholar
  52. 52.
    Ziêba-Palus J, Milczarek JM, Koscielniak P. Application of infrared spectroscopy and pyrolysis-gas chromatography – mass spectrometry to the analysis of automobile paint samples. Chem Anal. 2008;53:109–21.Google Scholar
  53. 53.
    Hummel DO, Scholl F. Atlas der Polymer- und Kunststoffanalyse, Band 2 Kunststoff, Fasern, Kautschuk, Harze, Ausgangs- und Hilfsstoffe, Abbauprodukte - Teil b/I. 2. VCH, Weinheim; 1988.Google Scholar
  54. 54.
    Hummel DO, Scholl F. Atlas of polymer and plastics analysis, volume 2 plastics, fibres, rubbers, resins; starting and auxiliary materials, degradation products, part a/I. 2. VCH, Weinheim; 1984.Google Scholar
  55. 55.
    Huang CK, Kerr PF. Infrared study of the carbonate minerals. Am Mineral. 1960;45:311–24.Google Scholar
  56. 56.
    Mitić Ž, Stolić A, Stojanović S, Najman S, Ignjatović N, Nikolić G, et al. Instrumental methods and techniques for structural and physicochemical characterization of biomaterials and bone tissue: a review. Mater Sci Eng C. 2017;79:930–49.  https://doi.org/10.1016/j.msec.2017.05.127.CrossRefGoogle Scholar
  57. 57.
    Learner T. The analysis of synthetic paints by pyrolysis-gas chromatography-mass spectrometry (PyGCMS). Stud Conserv. 2001;46:225–41.Google Scholar
  58. 58.
    Challinor JM. Structure determination of alkyd resins by simultaneous pyrolysis methylation. J Anal Appl Pyrolysis. 1991;18:233–44.CrossRefGoogle Scholar
  59. 59.
    Wei S, Pintus V, Schreiner M. A comparison study of alkyd resin used in art works by Py-GC/MS and GC/MS: the influence of aging. J Anal Appl Pyrolysis. 2013;104:441–7.  https://doi.org/10.1016/j.jaap.2013.05.028.CrossRefGoogle Scholar
  60. 60.
    Koopmans RJ, van der Linden R, Vansant EF. Quantitative determination of the vinylacetate content in ethylene vinyl-acetate copolymers—a critical review. Polym Eng Sci. 1982;22:878–82.CrossRefGoogle Scholar
  61. 61.
    Rimez B, Rahier H, Van Assche G, Artoos T, Biesemans M, Van Mele B. The thermal degradation of poly(vinyl acetate) and poly(ethylene-co-vinyl acetate), part I: experimental study of the degradation mechanism. Polym Degrad Stab. 2008;93:800–10.  https://doi.org/10.1016/j.polymdegradstab.2008.01.010.CrossRefGoogle Scholar
  62. 62.
    Comnea-Stancu IR, Wieland K, Ramer G, Schwaighofer A, Lendl B. On the identification of rayon/viscose as a major fraction of microplastics in the marine environment: discrimination between natural and manmade cellulosic fibers using Fourier transform infrared spectroscopy. Appl Spectrosc. 2017;71:939–50.  https://doi.org/10.1177/0003702816660725.CrossRefPubMedGoogle Scholar
  63. 63.
    Baran A, Fiedler A, Schulz H, Baranska M. In situ Raman and IR spectroscopic analysis of indigo dye. Anal Methods. 2010;2:1372–6.  https://doi.org/10.1039/c0ay00311e.CrossRefGoogle Scholar
  64. 64.
    Ibrahim M, El-Nahass MM, Kamel MA, El-Barbary AA, Wagner BD, El-Mansy MAM. On the spectroscopic analyses of thioindigo dye. Spectrochim Acta - Part A Mol Biomol Spectrosc. 2013;113:332–6.  https://doi.org/10.1016/j.saa.2013.05.014.CrossRefGoogle Scholar
  65. 65.
    Fabbri D, Helleur R. Characterization of the tetramethylammonium hydroxide thermochemolysis products of carbohydrates. J Anal Appl Pyrolysis. 1999;49:277–93.  https://doi.org/10.1016/S0165-2370(98)00085-0.CrossRefGoogle Scholar
  66. 66.
    Schwarzinger C, Tanczos I, Schmidt H. Levoglucosan, cellobiose and their acetates as model compounds for the thermally assisted hydrolysis and methylation of cellulose and cellulose acetate. J Anal Appl Pyrolysis. 2002;62:179–96.  https://doi.org/10.1016/S0165-2370(01)00114-0.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Andrea Käppler
    • 1
    • 2
  • Marten Fischer
    • 3
  • Barbara M. Scholz-Böttcher
    • 3
  • Sonja Oberbeckmann
    • 4
  • Matthias Labrenz
    • 4
  • Dieter Fischer
    • 1
  • Klaus-Jochen Eichhorn
    • 1
  • Brigitte Voit
    • 1
    • 2
  1. 1.Leibniz-Institut für Polymerforschung Dresden e.V. (IPF)DresdenGermany
  2. 2.Organische Chemie der PolymereTechnische Universität DresdenDresdenGermany
  3. 3.Institute for Chemistry and Biology of the Marine Environment (ICBM)Carl von Ossietzky University of OldenburgOldenburgGermany
  4. 4.Leibniz Institute for Baltic Sea Research Warnemünde (IOW)RostockGermany

Personalised recommendations