Advertisement

Analytical and Bioanalytical Chemistry

, Volume 410, Issue 25, pp 6353–6359 | Cite as

Two-dimensional capillary electrophoresis-mass spectrometry (CE-CE-MS): coupling MS-interfering capillary electromigration methods with mass spectrometry

  • Johannes Schlecht
  • Kevin Jooß
  • Christian Neusüß
Trends

Abstract

Electromigration separation techniques often demand certain compounds in the electrolyte to achieve the required selectivity and efficiency. These compounds, including the electrolyte itself, ampholytes, polymeric compounds for sieving, complexing agents, tensides, etc. are often non-volatile. Thus, interference with the electrospray ionization process is a common issue, impeding direct coupling of such electrolyte systems to mass spectrometry. Still, several options exist to obtain mass spectra after separation, including offline fractionation, alternative ionization, dilution, or the change to volatile constituents. In the first part of this article, these methods are discussed. However, all of these options are a compromise of separation performance and sensitivity of mass spectrometric detection. Two-dimensional capillary electrophoresis-mass spectrometry (CE-CE-MS) systems represent a promising alternative to the aforementioned challenges, as they allow the use of existing methods with best separation performance in combination with sensitive mass characterization. In this context, the second part of this article is dedicated to the advantages, limitations, and applications of this approach. Finally, an outlook towards future developments is given.

Keywords

Capillary electrophoresis Electrospray ionization Two-dimensional separation Interference-free mass spectrometry Pharmaceutical analysis 2D interface 

Abbreviations

2D

Two dimensional

AA

Ascorbic acid

ACE

Affinity capillary electrophoresis

APCI

Atmospheric pressure chemical ionization

APPI

Atmospheric pressure photo ionization

ASA

Acetylsalicylic acid

BGE

Background electrolyte

CD

Cyclodextrin

CE

Capillary electrophoresis

CSE

Capillary sieving electrophoresis

CIEF

Capillary isoelectric focusing

CZE

Capillary zone electrophoresis

ESI

Electrospray ionization

ICP

Inductive-coupled plasma

mAb

Monoclonal antibody

MALDI

Matrix-assisted-laser desorption/ionization

MEKC

Micellar electrokinetic chromatography

MS

Mass spectrometry

SDS

Sodium dodecyl sulfate

Notes

Funding information

The authors thank Hoffman-La Roche Ltd. (Basel, Switzerland) for financial support.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Menzinger F, Schmitt-Kopplin P, Freitag D, Kettrup A. Analysis of agrochemicals by capillary electrophoresis. J Chromatogr A. 2000;891(1):45–67.CrossRefPubMedGoogle Scholar
  2. 2.
    Fukushi K, Takeda S, Chayama K, Wakida S-I. Application of capillary electrophoresis to the analysis of inorganic ions in environmental samples. J Chromatogr A. 1999;834(1–2):349–62.CrossRefPubMedGoogle Scholar
  3. 3.
    Anastos N, Barnett NW, Lewis SW. Capillary electrophoresis for forensic drug analysis: a review. Talanta. 2005;67(2):269–79.CrossRefPubMedGoogle Scholar
  4. 4.
    Frazier RA, Papadopoulou A. Recent advances in the application of capillary electrophoresis for food analysis. Electrophoresis. 2003;24(22–23):4095–105.CrossRefPubMedGoogle Scholar
  5. 5.
    Kraly J, Fazal MA, Schoenherr RM, Bonn R, Harwood MM, Turner E, et al. Bioanalytical applications of capillary electrophoresis. Anal Chem. 2006;78(12):4097–110.CrossRefPubMedGoogle Scholar
  6. 6.
    Moritz B, Schnaible V, Kiessig S, Heyne A, Wild M, Finkler C, et al. Evaluation of capillary zone electrophoresis for charge heterogeneity testing of monoclonal antibodies. J Chromatogr B Analyt Technol Biomed Life Sci. 2015;983-984:101–10.CrossRefPubMedGoogle Scholar
  7. 7.
    Mitnik L, Novotny M, Felten C, Buonocore S, Koutny L, Schmalzing D. Recent advances in DNA sequencing by capillary and microdevice electrophoresis. Electrophoresis. 2001;22(19):4104–17.CrossRefPubMedGoogle Scholar
  8. 8.
    Zhu Z, Lu JJ, Liu S. Protein separation by capillary gel electrophoresis: a review. Anal Chim Acta. 2012;709:21–31.CrossRefPubMedGoogle Scholar
  9. 9.
    Schmitt-Kopplin P, Frommberger M. Capillary electrophoresis-mass spectrometry: 15 years of developments and applications. Electrophoresis. 2003;24(22–23):3837–67.CrossRefPubMedGoogle Scholar
  10. 10.
    Desiderio C, Rossetti DV, Iavarone F, Messana I, Castagnola M. Capillary electrophoresis-mass spectrometry: recent trends in clinical proteomics. J Pharm Biomed Anal. 2010;53(5):1161–9.CrossRefPubMedGoogle Scholar
  11. 11.
    Klepárník K. Recent advances in combination of capillary electrophoresis with mass spectrometry: methodology and theory. Electrophoresis. 2015;36(1):159–78.CrossRefPubMedGoogle Scholar
  12. 12.
    Monton MRN, Terabe S. Recent developments in capillary electrophoresis-mass spectrometry of proteins and peptides. Anal Sci. 2005;21(1):5–13.CrossRefPubMedGoogle Scholar
  13. 13.
    Petersson P, Jörntén-Karlsson M, Stålebro M. Direct coupling of micellar electrokinetic chromatography to mass spectrometry using a volatile buffer system based on perfluorooctanoic acid and ammonia. Electrophoresis. 2003;24(6):999–1007.CrossRefPubMedGoogle Scholar
  14. 14.
    van Biesen G, Bottaro CS. Ammonium perfluorooctanoate as a volatile surfactant for the analysis of N-methylcarbamates by MEKC-ESI-MS. Electrophoresis. 2006;27(22):4456–68.CrossRefPubMedGoogle Scholar
  15. 15.
    Moreno-González D, Haselberg R, Gámiz-Gracia L, García-Campaña AM, de JGJ, Somsen GW. Fully compatible and ultra-sensitive micellar electrokinetic chromatography-tandem mass spectrometry using sheathless porous-tip interfacing. J Chromatogr A. 2017;1524:283–9.CrossRefPubMedGoogle Scholar
  16. 16.
    Tang Q, Harrata AK, Lee CS. Capillary isoelectric focusing-electrospray mass spectrometry for protein analysis. Anal Chem. 1995;67:3515–9.CrossRefGoogle Scholar
  17. 17.
    Hühner J, Lämmerhofer M, Neusüß C. Capillary isoelectric focusing-mass spectrometry: coupling strategies and applications. Electrophoresis. 2015;36(21–22):2670–86.CrossRefPubMedGoogle Scholar
  18. 18.
    Silva M. MEKC: an update focusing on practical aspects. Electrophoresis. 2007;28(1–2):174–92.CrossRefPubMedGoogle Scholar
  19. 19.
    Simó C, García-Cañas V, Cifuentes A, CE-MS C. Electrophoresis. 2010;31(9):1442–56.PubMedGoogle Scholar
  20. 20.
    Týčová A, Ledvina V, Klepárník K. Recent advances in CE-MS coupling: instrumentation, methodology, and applications. Electrophoresis. 2017;38(1):115–34.CrossRefPubMedGoogle Scholar
  21. 21.
    Lindenburg PW, Haselberg R, Rozing G, Ramautar R. Developments in interfacing designs for CE-MS: towards enabling tools for proteomics and metabolomics. Chroma. 2015;78(5–6):367–77.CrossRefGoogle Scholar
  22. 22.
    Dai J, Lamp J, Xia Q, Zhang Y. Capillary isoelectric focusing-mass spectrometry method for the separation and online characterization of intact monoclonal antibody charge variants. Anal Chem. 2018;90(3):2246–54.CrossRefPubMedGoogle Scholar
  23. 23.
    Stutz H. Advances in the analysis of proteins and peptides by capillary electrophoresis with matrix-assisted laser desorption/ionization and electrospray-mass spectrometry detection. Electrophoresis. 2005;26(7–8):1254–90.CrossRefPubMedGoogle Scholar
  24. 24.
    Isoo K, Otsuka K, Terabe S. Application of sweeping to micellar electrokinetic chromatography-atmospheric pressure chemical ionization-mass spectrometric analysis of environmental pollutants. Electrophoresis. 2001;22(16):3426–32.CrossRefPubMedGoogle Scholar
  25. 25.
    Mol R, de JGJ, Somsen GW. Atmospheric pressure photoionization for enhanced compatibility in on-line micellar electrokinetic chromatography-mass spectrometry. Anal Chem. 2005;77(16):5277–82.CrossRefPubMedGoogle Scholar
  26. 26.
    Chen J, Fu F, Wu S, Wang J, Wang Z. Simultaneous detection of zinc dimethyldithiocarbamate and zinc ethylenebisdithiocarbamate in cabbage leaves by capillary electrophoresis with inductively coupled plasma mass spectrometry. J Sep Sci. 2017;40(19):3898–904.CrossRefPubMedGoogle Scholar
  27. 27.
    Malerod H, Lundanes E, Greibrokk T. Recent advances in on-line multidimensional liquid chromatography. Anal Methods. 2010;2(2):110–22.CrossRefGoogle Scholar
  28. 28.
    Kohl FJ, Montealegre C, Neusüß C. On-line two-dimensional capillary electrophoresis with mass spectrometric detection using a fully electric isolated mechanical valve. Electrophoresis. 2016;37(7–8):954–8.CrossRefPubMedGoogle Scholar
  29. 29.
    Helmja K, Borissova M, Knjazeva T, Jaanus M, Muinasmaa U, Kaljurand M, et al. Fraction collection in capillary electrophoresis for various stand-alone mass spectrometers. J Chromatogr A. 2009;1216(17):3666–73.CrossRefPubMedGoogle Scholar
  30. 30.
    Kohl FJ, Sánchez-Hernández L, Neusüß C. Capillary electrophoresis in two-dimensional separation systems: techniques and applications. Electrophoresis. 2015;36(1):144–58.CrossRefPubMedGoogle Scholar
  31. 31.
    Kler PA, Sydes D, Huhn C. Column-coupling strategies for multidimensional electrophoretic separation techniques. Anal Bioanal Chem. 2015;407(1):119–38.CrossRefPubMedGoogle Scholar
  32. 32.
    Neuberger S, Jooß K, Ressel C, Neusüß C. Quantification of ascorbic acid and acetylsalicylic acid in effervescent tablets by CZE-UV and identification of related degradation products by heart-cut CZE-CZE-MS. Anal Bioanal Chem. 2016;408(30):8701–12.CrossRefPubMedGoogle Scholar
  33. 33.
    Jooß K, Hühner J, Kiessig S, Moritz B, Neusüß C. Two-dimensional capillary zone electrophoresis-mass spectrometry for the characterization of intact monoclonal antibody charge variants, including deamidation products. Anal Bioanal Chem. 2017;409(26):6057–67.CrossRefPubMedGoogle Scholar
  34. 34.
    Hühner J, Neusüß C. CIEF-CZE-MS applying a mechanical valve. Anal Bioanal Chem. 2016;408(15):4055–61.CrossRefPubMedGoogle Scholar
  35. 35.
    Hühner J, Jooß K, Neusüß C. Interference-free mass spectrometric detection of capillary isoelectric focused proteins, including charge variants of a model monoclonal antibody. Electrophoresis. 2017;38(6):914–21.CrossRefPubMedGoogle Scholar
  36. 36.
    Montealegre C, Neusüß C. Coupling imaged capillary isoelectric focusing with mass spectrometry using a nanoliter valve. Electrophoresis. 2018;  https://doi.org/10.1002/elps.201800013 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Johannes Schlecht
    • 1
    • 2
  • Kevin Jooß
    • 1
    • 3
  • Christian Neusüß
    • 1
  1. 1.Faculty of ChemistryAalen UniversityAalenGermany
  2. 2.Pharmaceutical/Medicinal Chemistry, Institute of PharmacyFriedrich-Schiller-University JenaJenaGermany
  3. 3.Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum MünchenNeuherbergGermany

Personalised recommendations