Analytical and Bioanalytical Chemistry

, Volume 410, Issue 20, pp 4925–4941 | Cite as

Interactions between elastin-like peptides and an insulating poly(ortho-aminophenol) membrane investigated by AFM and XPS

  • Maria Elvira CarboneEmail author
  • Rosanna Ciriello
  • Pasquale Moscarelli
  • Federica Boraldi
  • Giuliana Bianco
  • Antonio Guerrieri
  • Brigida Bochicchio
  • Antonietta Pepe
  • Daniela Quaglino
  • Anna Maria SalviEmail author
Research Paper


This investigation was undertaken to explore the mutual recognition of the pentapeptide (ValGlyGlyValGly)n, a hydrophobic elastin-like peptide (ELP), suspended in deionized water in monomer (n = 1) and trimer (n = 3) forms and the outer surface of a very thin, insulating polymer, poly(ortho-aminophenol) (PoAP), electrochemically grown on a platinum foil by cyclic voltammetry in a neutral medium (phosphate-buffered saline, I = 0.1M) immersed in the suspension. As a prior task, the proved propensity of the ValGlyGlyValGly sequence, at the given minimal length (three or more repeats), to self-assemble into amyloid-like fibrils when solubilized in an aqueous environment was considered within the framework of testing PoAP surfaces for the specific detection of amyloid precursors. From our knowledge of the chemical structure and physical properties of both biomacromolecule families obtained in previous studies, we focused on the efficacy of the binding sites offered to ELP fibrils by PoAP in its as-prepared form or properly modified either by postsynthesis oxidation or by adsorption/entrapping of ELP monomer(s) with or without protecting terminal groups. Consistent with all methods of preparation, the best surfaces, recognizable by the trimer fibrils, are those modified to carry a larger number of carbonyls, particularly by entrapment of ELP monomer(s) during PoAP electrosynthesis using an imprinting-inspired method. The degree of attachment of fibrillar aggregates, detected by atomic force microscopy and X-ray photoelectron spectroscopy, provides unequivocal evidence of the cooperative forces involving PoAP–ELP interactions. The results obtained suggest the prospect of using the proposed Pt/PoAP/ELP systems as biodetectors in Alzheimer disease.

Graphical abstract

Synthesis steps of Pt/PoAP/ELP electrodes for amyloid detection. AFM = Atomic Force Microscopy, CV = Cyclic Voltammetry, ELPs = Elastin like Peptides, PoAP = Poly ortho-Aminophenol, Pt = Platinum, XPS = X-ray Photoelectron Spectroscopy


X-ray photoelectron spectroscopy Atomic force microscopy Poly(ortho-aminophenol) Elastin-like peptides Amyloids Peptide-imprinted cyclic voltammetry polymerization 



The authors are grateful to Fausto Langerame for acquisition of X-ray photoelectron spectra and technical assistance. The Surface Microscopy Laboratory of the Science Department (University of Basilicata) is acknowledged for the use of electrochemical and atomic force microscopy instrumentation during the PhD studies of MEC (A.Y. 2015-2016).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Supplementary material

216_2018_1142_MOESM1_ESM.pdf (788 kb)
ESM 1 (PDF 788 kb)


  1. 1.
    Takahashi RH, Nagao T, Gouras GK. Plaque formation and the intraneuronal accumulation of β-amyloid in Alzheimer's disease. Pathol Int. 2017;67:185–93.CrossRefPubMedGoogle Scholar
  2. 2.
    Hung ASM, Liang Y, Chow TC, Tang HC, Wu SL, Wai MSM, et al. Mutated tau, amyloid and neuroinflammation in Alzheimer disease—a brief review. Prog Histochem Cytochem. 2016;51:1–8.CrossRefPubMedGoogle Scholar
  3. 3.
    Selkoe DJ, Hardy J. The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol. Med. 2016;8:595–608.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Kaushik A, Jayant RD, Tiwari S, Vashist A, Nair M. Nano-biosensors to detect beta-amyloid for Alzheimer's disease management. Biosens Bioelectron. 2016;80:273–87.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Shui B, Tao D, Florea A, Cheng J, Zhao Q, Gu Y, et al. Biosensors for Alzheimer's disease biomarker detection: a review. Biochimie. 2018;147:13–24.CrossRefPubMedGoogle Scholar
  6. 6.
    Xing Y, Xia N. Biosensors for the determination of amyloid-beta peptides and their aggregates with application to Alzheimer's disease. Anal Lett. 2015,48:879–93.Google Scholar
  7. 7.
    Poljak A, Sachdev PS. Plasma amyloid beta peptides: an Alzheimer’s conundrum or a more accessible Alzheimer’s biomarker? Expert Rev Neurother. 2017;17:3–5.CrossRefPubMedGoogle Scholar
  8. 8.
    Moulin S, Leys D, Schraen-Maschke S, et al. Aβ1-40 and Aβ1-42 plasmatic levels in stroke: influence of pre-existing cognitive status and stroke characteristics. Curr Alzheimer Res. 2015;12:1–9.CrossRefGoogle Scholar
  9. 9.
    Ganesh HV, Chow AM, Kerman K. Recent advances in biosensors for neurodegenerative disease detection. Trends Anal Chem. 2016;79:363–70.CrossRefGoogle Scholar
  10. 10.
    Bochicchio B, Lorusso M, Pepe A, Tamburro AM. On enhancers and inhibitors of elastin-derived amyloidogenesis. Nanomedicine. 2009;4:31–46.CrossRefPubMedGoogle Scholar
  11. 11.
    Zhao J, Gao T, Yan Y, Chen G, Li G. Probing into the interaction of β-amyloid peptides with bilayer lipid membrane by electrochemical techniques. Electrochem Commun. 2013;30:26–8.CrossRefGoogle Scholar
  12. 12.
    Okuno H, Mori K, Okada T, Yokoyama Y, Suzuki H. Development of aggregation inhibitors for amyloid-β peptides and their evaluation by quartz-crystal microbalance. Chem Biol Drug Des. 2007;69:356–61.CrossRefPubMedGoogle Scholar
  13. 13.
    Okuno H, Mori K, Jitsukawa T, Inoue H, Chiba S. Convenient method for monitoring Aβ aggregation by quartz-crystal microbalance. Chem Biol Drug Des. 2006;68:273–5.CrossRefPubMedGoogle Scholar
  14. 14.
    Knowles TP, Shu W, Devlin GL, Meehan S, Auer S, Dobson CM, et al. Kinetics and thermodynamics of amyloid formation from direct measurements of fluctuations in fibril mass. Proc Natl Acad Sci U S A. 2007;104:10016–21.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    White DA, Buell AK, Dobson CM, Welland ME, Knowles TP. Biosensor-based label-free assays of amyloid growth. FEBS Lett. 2009;583:2587–92.CrossRefPubMedGoogle Scholar
  16. 16.
    Mustafa MK, Nabok A, Parkinson D, Tothill IE, Salam F, Tsargorodskaya A. Detection of β-amyloid peptide (1–16) and amyloid precursor protein (APP 770) using spectroscopic ellipsometry and QCM techniques: a step forward towards Alzheimers disease diagnostics. Biosens Bioelectron. 2010;26:1332–6.CrossRefPubMedGoogle Scholar
  17. 17.
    Gagni P, Sola L, Cretich M, Chiari M. Development of a high-sensitivity immunoassay for amyloid-beta 1–42 using a silicon microarray platform. Biosens Bioelectron. 2013;47:490–5.CrossRefPubMedGoogle Scholar
  18. 18.
    Stravalaci M, Bastone A, Beeg M, Cagnotto A, Colombo L, Di Fede G, et al. Specific recognition of biologically active amyloid-β oligomers by a new surface plasmon resonance-based immunoassay and an in vivo assay in Caenorhabditis elegans. J Biol Chem. 2012;287:27796–805.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Choi I, Lee LP. Rapid detection of Aβ aggregation and inhibition by dual functions of gold nanoplasmic particles: catalytic activator and optical reporter. ACS Nano. 2013;7:6268–77.CrossRefPubMedGoogle Scholar
  20. 20.
    Ragaliauskas T, Mickevicius M, Budvytyte R, Niaura G, Carbonnier B, Valincius G. Adsorption of β-amyloid oligomers on octadecanethiol monolayers. J Colloid Interface Sci. 2014;425:159–67.CrossRefPubMedGoogle Scholar
  21. 21.
    Becherer T, Grunewald C, Engelschalt V, Multhaup G, Risse T, Haag R. Polyglycerol based coatings to reduce non-specific protein adsorption in sample vials and on SPR sensors. Anal Chim Acta. 2015;867:47–55.CrossRefPubMedGoogle Scholar
  22. 22.
    Buell AK, White DA, Meier C, Welland ME, Knowles TP, Dobson CM. Surface attachment of protein fibrils via covalent modification strategies. J Phys Chem B. 2010;114:10925–38.CrossRefPubMedGoogle Scholar
  23. 23.
    Kotarek JA, Johnson KC, Moss MA. Quartz crystal microbalance analysis of growth kinetics for aggregation intermediates of the amyloid-β protein. Anal Biochem. 2008;378:15–24.CrossRefPubMedGoogle Scholar
  24. 24.
    Valiaev A, Abu-Lail NI, Lim DW, Chilkoti A, Zauscher S. Microcantilever sensing and actuation with end-grafted stimulus-responsive elastin-like polypeptides. Langmuir. 2007;23:339–44.CrossRefPubMedGoogle Scholar
  25. 25.
    Carbone ME, Ciriello R, Guerrieri G, Langerame F, Salvi AMXPS. AFM and electrochemical investigation on the inner composition of insulating poly(o-aminophenol), PoAP, deposited on platinum by CV, as a function of the number of cycles. Surf Interface Anal. 2016;48:99–104.CrossRefGoogle Scholar
  26. 26.
    Carbone ME, Ciriello R, Guerrieri G, Salvi AMXPS. investigation on the chemical structure of a very thin, insulating, film synthesized on platinum by electropolymerization of o-aminophenol (oAP) in aqueous solution at neutral pH. Surf Interface Anal. 2014;46:1081–5.CrossRefGoogle Scholar
  27. 27.
    Carbone ME, Ciriello R, Guerrieri G, Salvi AM. Poly(o-aminophenol) electrosynthesized onto platinum at acidic and neutral pH: comparative investigation on the polymers characteristics and on their inner and outer interfaces. Int J Electrochem Sci. 2014;9:2047–66.Google Scholar
  28. 28.
    Carbone ME, Ciriello R, Granafei S, Guerrieri G, Salvi AM. Electrosynthesis of conducting poly o-aminophenol films on Pt substrates: a combined electrochemical and XPS investigation. Electrochim Acta. 2014;144:174–85.CrossRefGoogle Scholar
  29. 29.
    Carbone ME, Ciriello R, Granafei S, Guerrieri G, Salvi AM. EQCM and XPS investigations on the redox switching of conducting poly(o-aminophenol) films electrosynthesized onto Pt substrates. Electrochim Acta. 2015;176:926–40.CrossRefGoogle Scholar
  30. 30.
    Salvi AM, Moscarelli P, Bochicchio B, Lanza G, Castle JE. Combined effects of solvation and aggregation propensity on the final supramolecular structures adopted by hydrophobic, glycine-rich, elastin-like polypeptides. Biopolymers. 2013;99:292–313.CrossRefPubMedGoogle Scholar
  31. 31.
    Salvi AM, Moscarelli P, Satriano G, Bochicchio B, Castle JE. Influence of amino acid specificities on the molecular and supramolecular organization of glycine-rich elastin-like polypeptides in water. Biopolymers. 2011;95:702–21.CrossRefPubMedGoogle Scholar
  32. 32.
    Castle JE, Ibris N, Salvi AM, Moscarelli P, Bochicchio B, Pepe A. Characterisation of helical structure in AFM micrographs of a trimer of the peptide sequence (ValGlyGlyValGly). Surf Interface Anal. 2014;46:679–82.CrossRefGoogle Scholar
  33. 33.
    Flamia R, Salvi AM, D'Alessio L, Castle JE, Tamburro AM. Transformation of amyloid-like fibers, formed from an elastin-based biopolymer, into a hydrogel: an X-ray photoelectron spectroscopy and atomic force microscopy study. Biomacromolecules. 2007;8:128–38.CrossRefPubMedGoogle Scholar
  34. 34.
    Flamia R, Lanza G, Salvi AM, Castle JE, Tamburro AM. Conformational study and hydrogen bonds detection on elastin-related polypeptides using X-ray photoelectron spectroscopy. Biomacromolecules. 2005;6:1299–309.CrossRefPubMedGoogle Scholar
  35. 35.
    Moscarelli P, Boraldi F, Bochicchio B, Pepe A, Salvi AM, Quaglino D. Structural characterization and biological properties of the amyloidogenic elastin-like peptide (VGGVG)3. Matrix Biol. 2014;36:15–27.CrossRefPubMedGoogle Scholar
  36. 36.
    Boraldi F, Moscarelli P, Bochicchio B, Pepe A, Salvi AM, Quaglino D. Heparan sulfate facilitate harmless amyloidogenic fibril formation interacting with elastin-like peptides. Sci. Rep. 2018;8:3115.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Carbone ME, Castle JE, Ciriello R, Salvi AM, Treacy J, Zhdan P. In situ electrochemical–AFM and cluster-ion-profiled XPS characterization of an insulating polymeric membrane as a substrate for immobilizing biomolecules. Langmuir. 2017;33:2504–13.CrossRefPubMedGoogle Scholar
  38. 38.
    Carbone ME, Ciriello R, Salvi AM, Castle JE. ToF-SIMS study of stages in the electrochemical growth of insulating poly(o-aminophenol) films. Surf Interface Anal. 2016;48:644–8.CrossRefGoogle Scholar
  39. 39.
    Fandrich M. On the structural definition of amyloid fibrils and other polypeptide aggregates. Cell Mol Life Sci. 2007;64:2066-2078.Google Scholar
  40. 40.
    Ruggeri FS, Habchi J, Cerreta A, Dietler G. AFM-based single molecule techniques: unraveling the amyloid pathogenic species. Curr Pharm Des. 2016;22:3950-70Google Scholar
  41. 41.
    Wei G, Su Z, Reynolds NP, Arosio P, Hamley IW, Gazit E, Mezzenga R. Self-assembling peptide and protein amyloids: from structure to tailored function in nanotechnology. Chem Soc Rev. 2017;46:4661-708.Google Scholar
  42. 42.
    Zhang W, Yu X, Li Y, Su Z, Jandt KD, Wei G. Protein-mimetic nanofibers: motif design, self-assembly synthesis, and sequence-specific biomedical applications. Prog Polym Sci. 2018;80:94–124.CrossRefGoogle Scholar
  43. 43.
    Yin D, Ulbricht M. Protein-selective adsorbers by molecular imprinting via a novel two-step surface grafting method. J Mater Chem B. 2013;1:3209–19.CrossRefGoogle Scholar
  44. 44.
    Saridakis E, Chayen NE, Imprinted polymers assisting protein crystallization. Trends Biotechnol. 2013,31:515-20.Google Scholar
  45. 45.
    Malitesta C, Mazzotta E, Picca RA, Poma A, Chianella I, Piletsky SA. MIP sensors—the electrochemical approach. Anal Bioanal Chem. 2012;402:1827–46.Google Scholar
  46. 46.
    Turner NW, Jeans CW, Brain KR, Allender CJ, Hlady V, Britt DW. From 3D to 2D: a review of the molecular imprinting of proteins. Biotechnol Progr. 2006;22(6):1474–89.CrossRefGoogle Scholar
  47. 47.
    Ortega JM. Conducting potential range for poly(o-aminophenol). Thin Solid Films. 2000;371:28–3.CrossRefGoogle Scholar
  48. 48.
    Flamia R, Zhdan PA, Martino M, Castle JE, Tamburro AM. AFM study of the elastin-like biopolymer poly (ValGlyGlyValGly). Biomacromolecules. 2004;5:1511–8.Google Scholar
  49. 49.
    Castle JE, Chapman-Kpodo H, Proctor A, Salvi AM. Curve-fitting in XPS using extrinsic and intrinsic background structure. J Electron Spectrosc Relat Phenom. 2000;106:65–80.CrossRefGoogle Scholar
  50. 50.
    Castle JE, Salvi AM. Chemical state information from the near-peak region of the X-ray photoelectron background. J Electron Spectrosc. 2001;114:1103–13.CrossRefGoogle Scholar
  51. 51.
    NIST (National Institute of Standards and Technology), X-ray Photoelectron Spectroscopy (XPS) Database. Accessed Dec 2017.
  52. 52.
    Briggs D, Grant JT. Surface analysis by Auger and X-ray photoelectron spectroscopy. Chichester: IM Publications and Surface Spectra; 2003.Google Scholar
  53. 53.
    Wagner CD, Davis LE, Zeller MV, Taylor JA, Raymond RH, Gale LH. Empirical atomic sensitivity factors for quantitative analysis by electron spectroscopy for chemical analysis. Surf Interface Anal. 1981;3:211–25.CrossRefGoogle Scholar
  54. 54.
    Castiglione Morelli MA, DeBiasi M, DeStradis A, Tamburro AM. An aggregating elastin-like pentapeptide. J Biomol Struct Dyn. 1993;11:181–90.CrossRefGoogle Scholar
  55. 55.
    Moreira FTC, Sharma S, Dutrae RAF, Noronha JPC, Cass AEG, Sales MFG. Protein-responsive polymers for point-of-care detection of cardiac biomarker. Sens Actuators B. 2014;196:123–32.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Maria Elvira Carbone
    • 1
    Email author
  • Rosanna Ciriello
    • 1
  • Pasquale Moscarelli
    • 2
  • Federica Boraldi
    • 2
  • Giuliana Bianco
    • 1
  • Antonio Guerrieri
    • 1
  • Brigida Bochicchio
    • 1
  • Antonietta Pepe
    • 1
  • Daniela Quaglino
    • 2
  • Anna Maria Salvi
    • 1
    Email author
  1. 1.Dipartimento di ScienzeUniversità degli Studi della BasilicataPotenzaItaly
  2. 2.Dipartimento di Scienze della VitaUniversità degli Studi di Modena e Reggio EmiliaModenaItaly

Personalised recommendations