Advertisement

Analytical and Bioanalytical Chemistry

, Volume 410, Issue 20, pp 4885–4893 | Cite as

An enzyme-free homogenous electrochemical assay for sensitive detection of the plasmid-mediated colistin resistance gene mcr-1

  • Bo Li
  • Zhixin Chai
  • Xiaohui Yan
  • Chunchen Liu
  • Bo Situ
  • Ye Zhang
  • Weilun Pan
  • Shihua Luo
  • Jianhua Liu
  • Lei Zheng
Research Paper

Abstract

Antibiotic resistance associated with the mcr-1 gene of Gram-negative bacteria, which confers resistance to drugs of last resort and has the potential to spread via plasmids, is one of the most pressing issues facing global health today. Point-of-care testing for the mcr-1 gene is needed to aid in the identification of colistin resistance in the field and to control its horizontal transmission. Here, we report the successful development of an enzyme-free homogenous electrochemical strategy for sensitive detection of the antibiotic resistance gene mcr-1 using the hybridization chain reaction and mcr-1-specific toehold probe. The long double-stranded DNA polymer produced using this strategy could be detected by assessing the diffusion of methylene blue towards the surface of a screen-printed gold electrode. Under optimized conditions, a linear relationship was observed between the variation of peak current and the natural logarithm of the mcr-1 gene concentration in the range of 1 nM to 1 μM with a detection limit of 0.78 nM (S/N = 3). This enzyme-free, isothermal platform is a rapid, portable, disposable, and sensitive method for detection of plasmid-mediated colistin resistance.

Keywords

Colistin Electrochemical assay Hybridization chain reaction Isothermal amplification Mcr-1 Resistance 

Abbreviations

AFM

Atomic force microscopy

DPV

Differential pulse voltammetry

dsDNA

Double-stranded DNA

HCR

Hybridization chain reaction

I

Initiator strand

KPC-2

Klebsiella pneumoniae carbapenemase-2

MB

Methylene blue

NDM-1

New Delhi metallo-β-lactamase-1

SPGE

Screen-printed gold electrode

ssDNA

Single-stranded DNA

TMSD

Toehold-mediated strand displacement

UPS

Unique Probe Selector

Notes

Funding information

This study was financed by grants from the National Natural Science Foundation of China (grant numbers 81371901 and 81702100), the Science and Technology Planning Project of Guangdong Province (grant numbers 2013B021800314, 2014A050503040, and 2017A020215123), and the Natural Science Foundation of Guangdong Province (grant number 2015A030313293).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Supplementary material

216_2018_1130_MOESM1_ESM.pdf (208 kb)
ESM 1 (PDF 207 kb)

References

  1. 1.
    Syed SN, Ducrotoy MJ, Bachmann TT. Antimicrobial resistance diagnostics: time to call in the young? Lancet Infect Dis. 2016;16(5):519–21.CrossRefGoogle Scholar
  2. 2.
    Lekunberri I, Balcazar JL, Borrego CM. Detection and quantification of the plasmid-mediated mcr-1 gene conferring colistin resistance in wastewater. Int J Antimicrob Agents. 2017;50(6):734–6.CrossRefGoogle Scholar
  3. 3.
    Chen Q, Andersson A, Mecklenburg M, Xie B. A biosensing strategy for the rapid detection and classification of antibiotic resistance. Biosens Bioelectron. 2015;73:251–5.CrossRefGoogle Scholar
  4. 4.
    Liu YY, Wang Y, Walsh TR, Yi LX, Zhang R, Spencer J, et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect Dis. 2016;16(2):161–8.CrossRefGoogle Scholar
  5. 5.
    Le J, Turner N, Deshpande LM, Davis AP, Castanheira M. Case report of transient mcr-1-haboring Escherichia coli with concurrent Staphylococcus aureus bacteremia in Long Beach. California Diagn Microbiol Infect Dis. 2017;89(4):303–4.CrossRefGoogle Scholar
  6. 6.
    Haenni M, Poirel L, Kieffer N, Chatre P, Saras E, Metayer V, et al. Co-occurrence of extended spectrum beta lactamase and MCR-1 encoding genes on plasmids. Lancet Infect Dis. 2016;16(3):281–2.CrossRefGoogle Scholar
  7. 7.
    Anjum MF, Duggett NA, AbuOun M, Randall L, Nunez-Garcia J, Ellis RJ, et al. Colistin resistance in Salmonella and Escherichia coli isolates from a pig farm in Great Britain. J Antimicrob Chemother. 2016;71(8):2306–13.CrossRefGoogle Scholar
  8. 8.
    Bernasconi OJ, Principe L, Tinguely R, Karczmarek A, Perreten V, Luzzaro F, et al. Evaluation of a new commercial microarray platform for the simultaneous detection of beta-lactamase and mcr-1 and mcr-2 genes in Enterobacteriaceae. J Clin Microbiol. 2017;55(10):3138–41.CrossRefGoogle Scholar
  9. 9.
    Voccia D, Sosnowska M, Bettazzi F, Roscigno G, Fratini E, De Franciscis V, et al. Direct determination of small RNAs using a biotinylated polythiophene impedimetric genosensor. Biosens Bioelectron. 2017;87:1012–9.CrossRefGoogle Scholar
  10. 10.
    Zaid MHM, Abdullah J, Yusof NA, Sulaiman Y, Wasoh H, Noh MFM, et al. PNA biosensor based on reduced graphene oxide/water soluble quantum dots for the detection of Mycobacterium tuberculosis. Sensors Actuators B Chem. 2017;241:1024–34.CrossRefGoogle Scholar
  11. 11.
    Liu S, Wei W, Wang Y, Fang L, Wang L, Li F. Ultrasensitive electrochemical detection of nucleic acid by coupling an autonomous cascade target replication and enzyme/gold nanoparticle-based post-amplification. Biosens Bioelectron. 2016;80:208–14.CrossRefGoogle Scholar
  12. 12.
    Xie H, Wang Q, Chai Y, Yuan Y, Yuan R. Enzyme-assisted cycling amplification and DNA-templated in-situ deposition of silver nanoparticles for the sensitive electrochemical detection of Hg(2.). Biosens Bioelectron. 2016;86:630–5.CrossRefGoogle Scholar
  13. 13.
    Jirasirichote A, Punrat E, Suea-Ngam A, Chailapakul O, Chuanuwatanakul S. Voltammetric detection of carbofuran determination using screen-printed carbon electrodes modified with gold nanoparticles and graphene oxide. Talanta. 2017;175:331–7.CrossRefGoogle Scholar
  14. 14.
    Alonso-Lomillo MA, Dominguez-Renedo O, Saldana-Botin A, Arcos-Martinez MJ. Determination of ascorbic acid in serum samples by screen-printed carbon electrodes modified with gold nanoparticles. Talanta. 2017;174:733–7.CrossRefGoogle Scholar
  15. 15.
    Qian Y, Gao F, Du L, Zhang Y, Tang D, Yang D. A novel label-free and enzyme-free electrochemical aptasensor based on DNA in situ metallization. Biosens Bioelectron. 2015;74:483–90.CrossRefGoogle Scholar
  16. 16.
    Hou T, Li W, Liu X, Li F. Label-free and enzyme-free homogeneous electrochemical biosensing strategy based on hybridization chain reaction: a facile, sensitive, and highly specific microRNA assay. Anal Chem. 2015;87(22):11368–74.CrossRefGoogle Scholar
  17. 17.
    Li SY, Liu C, Gong H, Chen CY, Chen XM, Cai CQ. Simple G-quadruplex-based 2-aminopurine fluorescence probe for highly sensitive and amplified detection of microRNA-21. Talanta. 2018;178:974–9.CrossRefGoogle Scholar
  18. 18.
    Genot AJ, Zhang DY, Bath J, Turberfield AJ. Remote toehold: a mechanism for flexible control of DNA hybridization kinetics. J Am Chem Soc. 2011;133(7):2177–82.CrossRefGoogle Scholar
  19. 19.
    Dirks RM, Pierce NA. Triggered amplification by hybridization chain reaction. Proc Natl Acad Sci. 2004;101(43):15275–8.CrossRefGoogle Scholar
  20. 20.
    Bi S, Yue S, Zhang S. Hybridization chain reaction: a versatile molecular tool for biosensing, bioimaging, and biomedicine. Chem Soc Rev. 2017;46(14):4281–98.CrossRefGoogle Scholar
  21. 21.
    Liu M, Xu JJ, Yang F, Gu YF, Chen H, Wang Y, et al. Sensitive electrochemical detection of DNA damage based on in situ double strand growth via hybridization chain reaction. Anal Bioanal Chem. 2017;409(29):6821–9.CrossRefGoogle Scholar
  22. 22.
    Lu SS, Hu T, Wang S, Sun J, Yang XR. Ultra-sensitive colorimetric assay system based on the hybridization chain reaction-triggered enzyme cascade amplification. ACS Appl Mater Interfaces. 2017;9(1):167–75.CrossRefGoogle Scholar
  23. 23.
    Oishi M. Enzyme-free and isothermal detection of microRNA based on click-chemical ligation-assisted hybridization coupled with hybridization chain reaction signal amplification. Anal Bioanal Chem. 2015;407(14):4165–72.CrossRefGoogle Scholar
  24. 24.
    Zhang FT, Nie J, Zhang DW, Chen JT, Zhou YL, Zhang XX. Methylene blue as a G-quadruplex binding probe for label-free homogeneous electrochemical biosensing. Anal Chem. 2014;86(19):9489–95.CrossRefGoogle Scholar
  25. 25.
    Moradi M, Sattarahmady N, Rahi A, Hatam GR, Sorkhabadi SMR, Heli H. A label-free, PCR-free and signal-on electrochemical DNA biosensor for Leishmania major based on gold nanoleaves. Talanta. 2016;161:48–53.CrossRefGoogle Scholar
  26. 26.
    Loy A, Arnold R, Tischler P, Rattei T, Wagner M, Horn M. probeCheck—a central resource for evaluating oligonucleotide probe coverage and specificity. Environ Microbiol. 2008;10(10):2894–8.CrossRefGoogle Scholar
  27. 27.
    Huang JM, Henihan G, Macdonald D, Michalowski A, Templeton K, Gibb AP, et al. Rapid electrochemical detection of New Delhi Metallo-beta-lactamase genes to enable point-of-care testing of carbapenem-resistant Enterobacteriaceae. Anal Chem. 2015;87(15):7738–45.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Bo Li
    • 1
    • 2
  • Zhixin Chai
    • 1
    • 2
  • Xiaohui Yan
    • 3
  • Chunchen Liu
    • 1
    • 2
  • Bo Situ
    • 1
    • 2
  • Ye Zhang
    • 1
    • 2
  • Weilun Pan
    • 1
    • 2
  • Shihua Luo
    • 1
    • 2
  • Jianhua Liu
    • 4
  • Lei Zheng
    • 1
    • 2
  1. 1.Department of Laboratory Medicine, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
  2. 2.Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
  3. 3.Research Center of Clinical Medicine, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
  4. 4.College of Veterinary Medicine, National Risk Assessment Laboratory for Antimicrobial Resistance of Microorganisms in AnimalsSouth China Agricultural UniversityGuangzhouChina

Personalised recommendations