Advertisement

Analytical and Bioanalytical Chemistry

, Volume 410, Issue 20, pp 4875–4884 | Cite as

Highly selective and ratiometric fluorescent nanoprobe for the detection of cysteine and its application in test strips

  • Fengyang Wang
  • Yingying Zhu
  • Jie Xu
  • Zhiai Xu
  • Guiying Cheng
  • Wen Zhang
Research Paper

Abstract

Cysteine (Cys) is a bithiol that plays a vital role in many physiological processes. However, it is difficult to discriminate Cys from homocysteine (Hcy) and glutathione (GSH), due to their similar chemical structures and reactivity. Herein, we have developed a polymeric nanoprobe, nanoHFA, for ratiometric, highly selective, and sensitive detection of Cys based on 7-hydroxycoumarin-3-carboxylic acid (HC) and fluorescein isothiocyanate (FITC)-acrylate (FITC-A) group-functionalized lipopolymer DSPE-PEG. The probe nanoHFA showed a strong fluorescence emission peak centered at 450 nm attributed to HC and a weak fluorescence emission peak centered at 520 nm due to the photoinduced electron transfer (PET) process of FITC induced by acrylate group. In the presence of Cys, the fluorescence signal at 520 nm could be lit up and the ratio of F520nm/F450nm showed a good linear relationship in the range of 5–60 μM with a low detection limit of 0.37 μM. The probe also displayed excellent water solubility and high selectivity to Cys over other biothiols such as Hcy and GSH. Moreover, we further used probe nanoHFA to detect Cu2+ ions in the range of 100–550 nM with a detection limit of 77 nM. The nanoprobe was successfully applied for the quantitative detection of Cys in fetal bovine serum, and fluorescent strips were developed for facile and visual detection of Cys and Cu2+ ions.

Graphical abstract

Keywords

Nanoprobe Cysteine Copper ions Ratiometric Test strips 

Notes

Funding information

This work was financially supported by the National Natural Science Foundation of China (21775046, 21675055, 21635003).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

216_2018_1128_MOESM1_ESM.pdf (623 kb)
ESM 1 (PDF 623 kb)

References

  1. 1.
    Wood ZA, Schröder E, Harris JR, Poole LB. Structure, mechanism and regulation of peroxiredoxins. Trends Biochem Sci. 2003;28(1):32–40.CrossRefGoogle Scholar
  2. 2.
    Reddie KG, Carroll KS. Expanding the functional diversity of proteins through cysteine oxidation. Curr Opin Chem Biol. 2008;12(6):746–54.CrossRefGoogle Scholar
  3. 3.
    Weerapana E, Wang C, Simon GM, Richter F, Khare S, Dillon MB, et al. Quantitative reactivity profiling predicts functional cysteines in proteomes. Nature. 2010;468(7325):790–5.CrossRefGoogle Scholar
  4. 4.
    Li Q, Guo Y, Shao S. A BODIPY based fluorescent chemosensor for Cu (II) ions and homocysteine/cysteine. Sens Actuators B Chem. 2012;171:872–7.CrossRefGoogle Scholar
  5. 5.
    Niu LY, Guan YS, Chen YZ, Wu LZ, Tung CH, Yang QZ. A turn-on fluorescent sensor for the discrimination of cystein from homocystein and glutathione. Chem Commun. 2013;49(13):1294–6.CrossRefGoogle Scholar
  6. 6.
    Chwatko G, Bald E. Determination of cysteine in human plasma by high-performance liquid chromatography and ultraviolet detection after pre-column derivatization with 2-chloro-1-methylpyridinium iodide. Talanta. 2000;52(3):509–15.CrossRefGoogle Scholar
  7. 7.
    Guan X, Hoffman B, Dwivedi C, Matthees DP. A simultaneous liquid chromatography/mass spectrometric assay of glutathione, cysteine, homocysteine and their disulfides in biological samples. J Pharm Biomed. 2003;31(2):251–61.CrossRefGoogle Scholar
  8. 8.
    Tang X, Liu Y, Hou H, You T. Electrochemical determination of L-tryptophan, L-tyrosine and L-cysteine using electrospun carbon nanofibers modified electrode. Talanta. 2010;80(5):2182–6.CrossRefGoogle Scholar
  9. 9.
    Chen X, Zhou Y, Peng X, Yoon J. Fluorescent and colorimetric probes for detection of thiols. Chem Soc Rev. 2010;39(6):2120–35.CrossRefGoogle Scholar
  10. 10.
    Wang H, Zhou G, Gai H, Chen X. A fluorescein-based probe with high selectivity to cysteine over homocysteine and glutathione. Chem Commun. 2012;48(67):8341–3.CrossRefGoogle Scholar
  11. 11.
    Xiang HJ, Tham HP, Nguyen MD, Phua SZF, Lim WQ, Liu JG, et al. An aza-BODIPY based near-infrared fluorescent probe for sensitive discrimination of cysteine/homocysteine and glutathione in living cells. Chem Commun. 2017;53(37):5220–3.CrossRefGoogle Scholar
  12. 12.
    Yue Y, Huo F, Ning P, Zhang Y, Chao J, Meng X, et al. Dual-site fluorescent probe for visualizing the metabolism of Cys in living cells. J Am Chem Soc. 2017;139(8):3181–5.CrossRefGoogle Scholar
  13. 13.
    Niu LY, Chen YZ, Zheng HR, Wu LZ, Tung CH, Yang QZ. Design strategies of fluorescent probes for selective detection among biothiols. Chem Soc Rev. 2015;44(17):6143–60.CrossRefGoogle Scholar
  14. 14.
    Niu W, Guo L, Li Y, Shuang S, Dong C, Wong MS. Highly selective two-photon fluorescent probe for ratiometric sensing and imaging cysteine in mitochondria. Anal Chem. 2016;88(3):1908–14.CrossRefGoogle Scholar
  15. 15.
    Yang X, Guo Y, Strongin RM. Conjugate addition/cyclization sequence enables selective and simultaneous fluorescence detection of cysteine and homocysteine. Angew Chem Int Ed. 2011;50(45):10690–3.CrossRefGoogle Scholar
  16. 16.
    Kwon H, Lee K, Kim HJ. Coumarin–malonitrile conjugate as a fluorescence turn-on probe for biothiols and its cellular expression. Chem Commun. 2011;47(6):1773–5.CrossRefGoogle Scholar
  17. 17.
    Liu Y, Lv X, Hou M, Shi Y, Guo W. Selective fluorescence detection of cysteine over homocysteine and glutathione based on a cysteine-triggered dual Michael addition/retro-aza-aldol cascade reaction. Anal Chem. 2015;87(22):11475–83.CrossRefGoogle Scholar
  18. 18.
    Liu J, Sun YQ, Huo Y, Zhang H, Wang L, Zhang P, et al. Simultaneous fluorescence sensing of Cys and GSH from different emission channels. J Am Chem Soc. 2013;136(2):574–7.CrossRefGoogle Scholar
  19. 19.
    Guo J, Yang S, Guo C, Zeng Q, Qing Z, Cao Z, et al. Molecular engineering of α-substituted acrylate ester template for efficient fluorescence probe of hydrogen polysulfides. Anal Chem. 2017;90(1):881–7.CrossRefGoogle Scholar
  20. 20.
    Pang L, Zhou Y, Gao W, Zhang J, Song H, Wang X, et al. Curcumin-based fluorescent and colorimetric probe for detecting cysteine in living cells and zebrafish. Ind Eng Chem Res. 2017;56(27):7650–5.CrossRefGoogle Scholar
  21. 21.
    Chen C, Liu W, Xu C, Liu W. A colorimetric and fluorescent probe for detecting intracellular biothiols. Biosens Bioelectron. 2016;85:46–52.CrossRefGoogle Scholar
  22. 22.
    Rani BK, John SA. A novel pyrene based fluorescent probe for selective detection of cysteine in presence of other bio-thiols in living cells. Biosens Bioelectron. 2016;83:237–42.CrossRefGoogle Scholar
  23. 23.
    Wang J, Li B, Zhao W, Zhang X, Luo X, Corkins ME, et al. Two-photon near infrared fluorescent turn-on probe toward cysteine and its imaging applications. ACS Sensor. 2016;1(7):882–7.CrossRefGoogle Scholar
  24. 24.
    Fu ZH, Han X, Shao Y, Fang J, Zhang ZH, Wang YW, et al. Fluorescein-based chromogenic and ratiometric fluorescence probe for highly selective detection of cysteine and its application in bioimaging. Anal Chem. 2017;89(3):1937–44.CrossRefGoogle Scholar
  25. 25.
    Gao B, Cui L, Pan Y, Zhang G, Zhou Y, Zhang C, et al. A highly selective ratiometric fluorescent probe for biothiol and imaging in live cells. RSC Adv. 2016;6(49):43028–33.CrossRefGoogle Scholar
  26. 26.
    Lim CS, Masanta G, Kim HJ, Han JH, Kim HM, Cho BR. Ratiometric detection of mitochondrial thiols with a two-photon fluorescent probe. J Am Chem Soc. 2011;133(29):11132–5.CrossRefGoogle Scholar
  27. 27.
    Cabral H, Matsumoto Y, Mizuno K, Chen Q, Murakami M, Kimura M, et al. Accumulation of sub-100 nm polymeric micelles in poorly permeable tumours depends on size. Nat Nanotechnol. 2011;6(12):815–23.CrossRefGoogle Scholar
  28. 28.
    Bae Y, Fukushima S, Harada A, Kataoka K. Design of environment-sensitive supramolecular assemblies for intracellular drug delivery: polymeric micelles that are responsive to intracellular pH change. Angew Chem Int Edit. 2003;42(38):4640–3.CrossRefGoogle Scholar
  29. 29.
    Lu L, Feng C, Xu J, Wang F, Yu H, Xu Z, et al. Hydrophobic-carbon-dot-based dual-emission micelle for ratiometric fluorescence biosensing and imaging of Cu2+ in liver cells. Biosens Bioelectron. 2017;92:101–8.CrossRefGoogle Scholar
  30. 30.
    Pan L, Sun S, Zhang L, Jiang K, Lin H. Near-infrared emissive carbon dots for two-photon fluorescence bioimaging. Nanoscale. 2017;8(39):17350–6.CrossRefGoogle Scholar
  31. 31.
    Song J, Li S, Zhao C, Lu Y, Zhao D, Sun J, et al. A superhydrophilic cement-coated mesh: an acid, alkali, and organic reagent-free material for oil/water separation. Nanoscale. 2018;10:1920–9.CrossRefGoogle Scholar
  32. 32.
    Erdal NB, Hakkarainen M. Construction of bioactive and reinforced bioresorbable nanocomposites by reduced nano-graphene oxide carbon dots. Biomacromolecules. 2018;19:1074–81.CrossRefGoogle Scholar
  33. 33.
    Domaille DW, Zeng L, Chang CJ. Visualizing ascorbate-triggered release of labile copper within living cells using a ratiometric fluorescent sensor. J Am Chem Soc. 2010;132(4):1194–5.CrossRefGoogle Scholar
  34. 34.
    Siluvai GS, Mayfield M, Nilges MJ, DeBeer George S, Blackburn NJ. Anatomy of a red copper center: spectroscopic identification and reactivity of the copper centers of Bacillus subtilis Sco and its Cys-to-Ala variants. J Am Chem Soc. 2010;132(14):5215–26.CrossRefGoogle Scholar
  35. 35.
    Wang YQ, Zhao T, He XW, Li WY, Zhang YK. A novel core-satellite CdTe/Silica/Au NCs hybrid sphere as dual-emission ratiometric fluorescent probe for Cu2+. Biosens Bioelectron. 2014;51:40–6.CrossRefGoogle Scholar
  36. 36.
    Jo S, Kim D, Son SH, Kim Y, Lee TS. Conjugated poly (fluorene-quinoxaline) for fluorescence imaging and chemical detection of nerve agents with its paper-based strip. ACS Appl Mater Inter. 2014;6(2):1330–6.CrossRefGoogle Scholar
  37. 37.
    You M, Lin M, Gong Y, Wang S, Li A, Ji L, et al. Household fluorescent lateral flow strip platform for sensitive and quantitative prognosis of heart failure using dual-color upconversion nanoparticles. ACS Nano. 2017;11(6):6261–70.CrossRefGoogle Scholar
  38. 38.
    Yan X, Li H, Zheng W, Su X. Visual and fluorescent detection of tyrosinase activity by using a dual-emission ratiometric fluorescence probe. Anal Chem. 2015;87(17):8904–9.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Chemistry and Molecular EngineeringEast China Normal UniversityShanghaiChina
  2. 2.College of Chemistry, Chemical Engineering and Materials ScienceShandong Normal UniversityJinanChina

Personalised recommendations