Advertisement

Analytical and Bioanalytical Chemistry

, Volume 410, Issue 18, pp 4509–4517 | Cite as

Monitoring dynamic release of intracellular hydrogen peroxide through a microelectrode based enzymatic biosensor

  • Hang Zhang
  • Jun Ruan
  • Weiwei Liu
  • Xuerui Jiang
  • Tianyu Du
  • Hui Jiang
  • Pasquarelli Alberto
  • Kay-Eberhard Gottschalk
  • Xuemei Wang
Research Paper

Abstract

A high sensitive and selective hydrogen peroxide (H2O2) biosensor was fabricated on the basis of reduced hemoglobin (Hb) and single-walled carbon nanotubes (SWCNTs) for detecting the release of H2O2 from living HepG2 cancer cells in the process of the in situ biosynthesis of ZnO quantum. The modification of carbon fiber microelectrode (CFME) was carried out by physical adsorption. By the scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS), the dense cover of surface and successful immobilization were characterized. Electrochemical investigation demonstrates that the as-prepared modified microelectrode showed a quasi-reversible process toward the reduction of H2O2, which exhibited a linear range from 0.51 to 10.6 μM, with a limit of detection of 0.23 μM. This microelectrode biosensor was applied for the quantification of the change of H2O2 concentration released from HepG2 cells through the in situ biosynthesis of ZnO quantum dots, which was further confirmed by the fluorescence staining.

Keywords

Microelectrode Biosensor Hydrogen peroxide Intracellular ROS 

Notes

Acknowledgements

This work is supported by the National High-tech R&D Program and National Key Research & Development Program of China (Nos. 2017YFA0205301), and the National Natural Science Foundation of China (Nos. 91753106, 81325011, 21327902).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol. 2007;39(1):44–84.CrossRefPubMedGoogle Scholar
  2. 2.
    Chang H, Wang X, Shiu K-K, Zhu Y, Wang J, Li Q, et al. Layer-by-layer assembly of graphene, au and poly (toluidine blue O) films sensor for evaluation of oxidative stress of tumor cells elicited by hydrogen peroxide. Biosens Bioelectron. 2013;41:789–94.CrossRefPubMedGoogle Scholar
  3. 3.
    Roberts JG, Hamilton KL, Sombers LA. Comparison of electrode materials for the detection of rapid hydrogen peroxide fluctuations using background-subtracted fast scan cyclic voltammetry. Analyst. 2011;136(17):3550–6.CrossRefPubMedGoogle Scholar
  4. 4.
    Valko M, Izakovic M, Mazur M, Rhodes CJ, Telser J. Role of oxygen radicals in DNA damage and cancer incidence. Mol Cell Biochem. 2004;266(1–2):37–56.CrossRefPubMedGoogle Scholar
  5. 5.
    Behl C, Davis J, Lesley R, Schubert D. Hydrogen peroxide mediates amyloid Β protein toxicity. Cell. 1994;77(6):817–27.CrossRefPubMedGoogle Scholar
  6. 6.
    Sultana R, Butterfield DA. Role of oxidative stress in the progression of Alzheimer's disease. J Alzheimers Dis. 2010;19(1):341–53.CrossRefPubMedGoogle Scholar
  7. 7.
    Weisskopf M, O'reilly E, Chen H, Schwarzschild M, Ascherio A. Plasma urate and risk of Parkinson's disease. Am J Epidemiol. 2007;166(5):561–7.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Brieger K, Schiavone S, Miller FJ Jr, Krause K-H. Reactive oxygen species: from health to disease. Swiss Med Wkly. 2012;142:w13659.PubMedGoogle Scholar
  9. 9.
    Pryor WA. Vitamin E and heart disease: basic science to clinical intervention trials. Free Radic Biol Med. 2000;28(1):141–64.CrossRefPubMedGoogle Scholar
  10. 10.
    Miller EW, Chang CJ. Fluorescent probes for nitric oxide and hydrogen peroxide in cell signaling. Curr Opin Chem Biol. 2007;11(6):620–5.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Paulsen CE, Carroll KS. Orchestrating redox signaling networks through regulatory cysteine switches. ACS Chem Biol. 2009;5(1):47–62.CrossRefGoogle Scholar
  12. 12.
    Matés JM, Segura JA, Alonso FJ, Márquez J. Intracellular redox status and oxidative stress: implications for cell proliferation, apoptosis, and carcinogenesis. Arch Toxicol. 2008;82(5):273–99.CrossRefPubMedGoogle Scholar
  13. 13.
    Miller EW, Dickinson BC, Chang CJ. Aquaporin-3 mediates hydrogen peroxide uptake to regulate downstream intracellular signaling. Proc Natl Acad Sci. 2010;107(36):15681–6.CrossRefPubMedGoogle Scholar
  14. 14.
    Yao S, Xu J, Wang Y, Chen X, Xu Y, Hu S. A highly sensitive hydrogen peroxide Amperometric sensor based on MnO2 nanoparticles and Dihexadecyl hydrogen phosphate composite film. Anal Chim Acta. 2006;557(1–2):78–84.CrossRefGoogle Scholar
  15. 15.
    Wang K, Liu Q, Wu X-Y, Guan Q-M, Li H-N. Graphene enhanced electrochemiluminescence of Cds nanocrystal for H2O2 sensing. Talanta. 2010;82(1):372–6.CrossRefPubMedGoogle Scholar
  16. 16.
    Wen F, Dong Y, Feng L, Wang S, Zhang S, Zhang X. Horseradish peroxidase functionalized fluorescent gold nanoclusters for hydrogen peroxide sensing. Anal Chem. 2011;83(4):1193–6.CrossRefPubMedGoogle Scholar
  17. 17.
    Nogueira RFP, Oliveira MC, Paterlini WC. Simple and fast spectrophotometric determination of H2O2 in photo-Fenton reactions using Metavanadate. Talanta. 2005;66(1):86–91.CrossRefPubMedGoogle Scholar
  18. 18.
    Wightman RM. Probing cellular chemistry in biological systems with microelectrodes. Science. 2006;311(5767):1570–4.CrossRefPubMedGoogle Scholar
  19. 19.
    Forster RJ. Microelectrodes: new dimensions in electrochemistry. Chem Soc Rev. 1994;23(4):289–97.CrossRefGoogle Scholar
  20. 20.
    Huffman ML, Venton BJ. Carbon-Fiber microelectrodes for in vivo applications. Analyst. 2009;134(1):18–24.CrossRefPubMedGoogle Scholar
  21. 21.
    Sanford AL, Morton SW, Whitehouse KL, Oara HM, Lugo-Morales LZ, Roberts JG, et al. Voltammetric detection of hydrogen peroxide at carbon fiber microelectrodes. Anal Chem. 2010;82(12):5205–10.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Wu Z, Chen L, Shen G, Yu R. Platinum nanoparticle-modified carbon fiber ultramicroelectrodes for mediator-free biosensing. Sensors Actuators B Chem. 2006;119(1):295–301.CrossRefGoogle Scholar
  23. 23.
    Ross AE, Venton BJ. Nafion–Cnt coated carbon-Fiber microelectrodes for enhanced detection of adenosine. Analyst. 2012;137(13):3045–51.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Wen Z, Ci S, Li J. Pt nanoparticles inserting in carbon nanotube arrays: nanocomposites for glucose biosensors. J Phys Chem C. 2009;113(31):13482–7.CrossRefGoogle Scholar
  25. 25.
    Zhang Y, Bai X, Wang X, Shiu K-K, Zhu Y, Jiang H. Highly sensitive graphene–Pt nanocomposites Amperometric biosensor and its application in living cell H2O2 detection. Anal Chem. 2014;86(19):9459–65.CrossRefPubMedGoogle Scholar
  26. 26.
    Li C, Liu X, Zhang Y, Chen Y, Du T, Jiang H, et al. A novel nonenzymatic biosensor for evaluation of oxidative stress based on nanocomposites of graphene blended with cui. Anal Chim Acta. 2016;933:66–74.CrossRefPubMedGoogle Scholar
  27. 27.
    Li Y, Zhang J-J, Xuan J, Jiang L-P, Zhu J-J. Fabrication of a novel nonenzymatic hydrogen peroxide sensor based on Se/Pt nanocomposites. Electrochem Commun. 2010;12(6):777–80.CrossRefGoogle Scholar
  28. 28.
    Kafi A, Yin F, Shin H-K, Kwon Y-S. Hydrogen peroxide biosensor based on DNA–Hb modified gold electrode. Thin Solid Films. 2006;499(1–2):420–4.CrossRefGoogle Scholar
  29. 29.
    Patolsky F, Weizmann Y, Willner I. Long-range electrical contacting of redox enzymes by Swcnt connectors. Angew Chem Int Ed. 2004;43(16):2113–7.CrossRefGoogle Scholar
  30. 30.
    Guiseppi-Elie A, Lei C, Baughman RH. Direct Electron transfer of glucose oxidase on carbon nanotubes. Nanotechnology. 2002;13(5):559.CrossRefGoogle Scholar
  31. 31.
    Yao Y, Shiu K-K. Electron-transfer properties of different carbon nanotube materials, and their use in glucose biosensors. Anal Bioanal Chem. 2007;387(1):303–9.CrossRefPubMedGoogle Scholar
  32. 32.
    Yagati AK, Choi JW. Protein based electrochemical biosensors for H2o2 detection towards clinical diagnostics. Electroanalysis. 2014;26(6):1259–76.CrossRefGoogle Scholar
  33. 33.
    Ren QQ, Yuan XJ, Huang XR, Wen W, Zhao YD, Chen W. In vivo monitoring of oxidative burst on Aloe under salinity stress using hemoglobin and single-walled carbon nanotubes modified carbon fiber ultramicroelectrode. Biosens Bioelectron. 2013;50:318–24.CrossRefPubMedGoogle Scholar
  34. 34.
    Chen W, Cai S, Ren QQ, Wen W, Zhao Y-D. Recent advances in electrochemical sensing for hydrogen peroxide: a review. Analyst. 2012;137(1):49–58.CrossRefPubMedGoogle Scholar
  35. 35.
    Du T, Zhao C, ur Rehman F, Lai L, Li X, Sun Y, et al. Rapid and multimodal in vivo bioimaging of cancer cells through in situ biosynthesis of Zn&Fe nanoclusters. Nano Res. 2017;10(8):2626–32.CrossRefGoogle Scholar
  36. 36.
    Simizu S, Takada M, Umezawa K, Imoto M. Requirement of caspase-3 (-like) protease-mediated hydrogen peroxide production for apoptosis induced by various anticancer drugs. J Biol Chem. 1998;273(41):26900–7.CrossRefPubMedGoogle Scholar
  37. 37.
    Fan Y, Yang H, Liu X, Zhu H, Zou G. Preparation and study on radar absorbing materials of nickel-coated carbon fiber and flake graphite. J Alloys Compd. 2008;461(1):490–4.CrossRefGoogle Scholar
  38. 38.
    Song S, Dong S. Spectroelectrochemistry of the quasi-reversible reduction and oxidation of hemoglobin at a methylene blue adsorbed modified electrode. J Electroanal Chem Interfac. 1988;253(2):337–46.CrossRefGoogle Scholar
  39. 39.
    Yan Y, Zheng W, Zhang M, Wang L, Su L, Mao L. Bioelectrochemically functional Nanohybrids through co-assembling of proteins and surfactants onto carbon nanotubes: facilitated electron transfer of assembled proteins with enhanced faradic response. Langmuir. 2005;21(14):6560–6.CrossRefPubMedGoogle Scholar
  40. 40.
    Lu Q, Hu S, Pang D, He Z. Direct electrochemistry and electrocatalysis with hemoglobin in water-soluble quantum dots film on glassy carbon electrode. Chem Commun. 2005;20:2584–5.CrossRefGoogle Scholar
  41. 41.
    Meites L, Delahay P. Polarographic techniques. J Electrochem Soc. 1966;113(5):124C.CrossRefGoogle Scholar
  42. 42.
    Zhang XW, Qiu QF, Jiang H, Zhang FL, Liu YL, Amatore C, et al. Real-time intracellular measurements of Ros and Rns in living cells with single core–shell nanowire electrodes. Angew Chem Int Ed. 2017;56(42):12997–3000.CrossRefGoogle Scholar
  43. 43.
    Kamin RA, Wilson GS. Rotating ring-disk enzyme electrode for biocatalysis kinetic studies and characterization of the immobilized enzyme layer. Anal Chem. 1980;52(8):1198–205.CrossRefGoogle Scholar
  44. 44.
    Sun W, Rf G, Jiao K. Electrochemistry and electrocatalysis of a Nafion/Nano-Caco3/Hb film modified carbon ionic liquid electrode using Bmimpf6 as binder. Electroanalysis. 2007;19(13):1368–74.CrossRefGoogle Scholar
  45. 45.
    Wang H, Guan R, Fan C, Zhu D, Li G. A hydrogen peroxide biosensor based on the bioelectrocatalysis of hemoglobin incorporated in a Kieselgubr film. Sensors Actuators B Chem. 2002;84(2–3):214–8.CrossRefGoogle Scholar
  46. 46.
    He R, Tang H, Jiang D. Chen H-y. Electrochemical visualization of intracellular hydrogen peroxide at single cells. Anal Chem. 2016;88(4):2006–9.CrossRefPubMedGoogle Scholar
  47. 47.
    Davey MW, Montagu MV, Inzé D, Sanmartin M, Kanellis A, Smirnoff N, et al. Plant L-ascorbic acid: chemistry, function, metabolism, bioavailability and effects of processing. J Sci Food Agric. 2000;80(7):825–60.CrossRefGoogle Scholar
  48. 48.
    Chen J, He Z, Liu H, Cha C. Electrochemical determination of reduced glutathione (Gsh) by applying the powder microelectrode technique. J Electroanal Chem. 2006;588(2):324–30.CrossRefGoogle Scholar
  49. 49.
    Jones R, Morice A. Hydrogen peroxide—an intracellular signal in the pulmonary circulation: involvement in hypoxic pulmonary vasoconstriction. Pharmacol Ther. 2000;88(2):153–61.CrossRefPubMedGoogle Scholar
  50. 50.
    Gorman A, McGowan A, Cotter TG. Role of peroxide and superoxide anion during tumour cell apoptosis. FEBS Lett. 1997;404(1):27–33.CrossRefPubMedGoogle Scholar
  51. 51.
    Enami S, Sakamoto Y, Colussi AJ. Fenton chemistry at aqueous interfaces. Proc Natl Acad Sci. 2014;111(2):623–8.CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Hang Zhang
    • 1
  • Jun Ruan
    • 1
  • Weiwei Liu
    • 1
  • Xuerui Jiang
    • 1
  • Tianyu Du
    • 1
  • Hui Jiang
    • 1
  • Pasquarelli Alberto
    • 2
  • Kay-Eberhard Gottschalk
    • 2
  • Xuemei Wang
    • 1
  1. 1.State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
  2. 2.Institute of Experimental PhysicsUlm UniversityUlmGermany

Personalised recommendations