Analytical and Bioanalytical Chemistry

, Volume 410, Issue 18, pp 4379–4386 | Cite as

Real-time monitoring of endogenous cysteine levels in living cells using a CD-based ratiometric fluorescent nanoprobe

  • Hong Wang
  • Peisheng ZhangEmail author
  • Yong Tian
  • Yuan Zhang
  • Heping Yang
  • Shu Chen
  • Rongjin ZengEmail author
  • Yunfei Long
  • Jian ChenEmail author
Research Paper


A simple and readily available fluorescent probe is needed for the real-time monitoring of endogenous cysteine (Cys) levels in living cells, as such a probe could be used to study the role of Cys in related diseases. Herein, we report the first fluorescent probe based on carbon dots (CDs-FITA) for the selective and ratiometric imaging of endogenous Cys in live cells. In this ratiometric fluorescent probe, a fluorescein derivative (FITA) that recognizes Cys is covalently linked to the surfaces of carbon dots (CDs); employing CDs greatly improves the water solubility of the probe. Acrylate on FITA is selectively cleaved by Cys in aqueous solution under mild conditions, leading to a dramatic increase in the fluorescence from fluorescein. The probe therefore allows the highly selective ratiometric fluorescent detection of Cys even in the presence of various interferents. The as-prepared CDs-FITA showed excellent performance when applied to detect Cys in blood serum. In addition, due to its negligible cytotoxicity, the CDs-FITA can also be utilized for the real-time monitoring of endogenous cysteine (Cys) levels in living cells.

Graphical abstract

Illustration of the CD-based probe for Cys imaging in living cells


Carbon dots Fluorescein Ratiometric fluorescence Cys Living cell imaging 



We gratefully acknowledge the financial support provided by NSFC (project nos. 51603067, 51773056, and 51373002), the Hunan Provincial Natural Science Foundation of China (project nos. 2018JJ3143 and 2016JJ5005), the Open Project Program of State Key Laboratory of Chemo/Biosensing and Chemometrics (project nos. 2016019, 2013008), and the China Postdoctoral Science Foundation (project no. 2017 M622571).

Compliance with ethical standards

Conflicts of interest

There are no conflicts of interest to declare.

Supplementary material

216_2018_1091_MOESM1_ESM.pdf (1.1 mb)
ESM 1 (PDF 1095 kb)


  1. 1.
    Zhang S, Ong C-N, Shen H-M. Critical roles of intracellular thiols and calcium in parthenolide-induced apoptosis in human colorectal cancer cells. Cancer Lett. 2004;208(2):143–53.CrossRefPubMedGoogle Scholar
  2. 2.
    Reddie KG, Carroll KS. Expanding the functional diversity of proteins through cysteine oxidation. Curr Opin Chem Biol. 2008;12(6):746–54.CrossRefPubMedGoogle Scholar
  3. 3.
    Paulsen CE, Carroll KS. Cysteine-mediated redox signaling: chemistry, biology, and tools for discovery. Chem Rev. 2013;113(7):4633–79.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Shahrokhian S. Lead phthalocyanine as a selective carrier for preparation of a cysteine-selective electrode. Anal Chem. 2001;73(24):5972–8.CrossRefPubMedGoogle Scholar
  5. 5.
    Li Y, Liu W, Zhang P, Zhang H, Wu J, Ge J, et al. A fluorescent probe for the efficient discrimination of Cys, Hcy and GSH based on different cascade reactions. Biosens Bioelectron. 2017;90:117–24.CrossRefPubMedGoogle Scholar
  6. 6.
    Xue S, Ding S, Zhai Q, Zhang H, Feng G. A readily available colorimetric and near-infrared fluorescent turn-on probe for rapid and selective detection of cysteine in living cells. Biosens Bioelectron. 2015;68:316–21.CrossRefPubMedGoogle Scholar
  7. 7.
    Chen C, Zhou L, Huang X, Liu W. Rapid detection of intracellular Cys over Hcy and GSH using a novel two-photon coumarinocoumarin-based colorimetric and fluorescent probe. J Mater Chem B. 2017;5(25):5892–7.CrossRefGoogle Scholar
  8. 8.
    Jung HS, Han JH, Pradhan T, Kim S, Lee SW, Sessler JL, et al. A cysteine-selective fluorescent probe for the cellular detection of cysteine. Biomaterials. 2012;33(3):945–53.Google Scholar
  9. 9.
    Chen W, Xu S, Day JJ, Wang D, Xian M. A general strategy for development of near-infrared fluorescent probes for bioimaging. Angew Chem Int Ed. 2017;56(52):16611–5.Google Scholar
  10. 10.
    Li X, Gao X, Shi W, Ma H. Design strategies for water-soluble small molecular chromogenic and fluorogenic probes. Chem Rev. 2014;114(1):590–659.CrossRefPubMedGoogle Scholar
  11. 11.
    He L, Dong B, Liu Y, Lin W. Fluorescent chemosensors manipulated by dual/triple interplaying sensing mechanisms. Chem Soc Rev. 2016;45(23):6449–61.CrossRefPubMedGoogle Scholar
  12. 12.
    He XP, Hu XL, James TD, Yoon J, Tian H. Multiplexed photoluminescent sensors: towards improved disease diagnostics. Chem Soc Rev. 2017;46(22):6687–96.CrossRefPubMedGoogle Scholar
  13. 13.
    Niu LY, Chen YZ, Zheng HR, Wu LZ, Tung CH, Yang QZ. Design strategies of fluorescent probes for selective detection among biothiols. Chem Soc Rev. 2015;44(17):6143–60.CrossRefPubMedGoogle Scholar
  14. 14.
    Ming W, Feng J, Chang S, Xiang K, Liu Z, Tian B, et al. Rhodamine-based fluorescent probes for selective detection of glutathione and cysteine. Res Chem Intermed. 2017;43:7387–98.CrossRefGoogle Scholar
  15. 15.
    Hou JT, Ren WX, Li K, Seo J, Sharma A, Yu XQ, et al. Fluorescent bioimaging of pH: from design to applications. Chem Soc Rev. 2017;46(8):2076–90.CrossRefPubMedGoogle Scholar
  16. 16.
    Zhang P, Jiang XF, Nie X, Huang Y, Zeng F, Xia X, et al. A two-photon fluorescent sensor revealing drug-induced liver injury via tracking gamma-glutamyltranspeptidase (GGT) level in vivo. Biomaterials. 2016;80:46–56.CrossRefPubMedGoogle Scholar
  17. 17.
    Zhang P, Wang H, Zhang D, Zeng X, Zeng R, Xiao L, et al. Two-photon fluorescent probe for lysosome-targetable hypochlorous acid detection within living cells. Sensors Actuators B Chem. 2018;255:2223–31.CrossRefGoogle Scholar
  18. 18.
    Liu X, Tian H, Yang L, Su Y, Guo M, Song X. An ESIPT-based fluorescent probe for sensitive and selective detection of Cys/Hcy over GSH with a red emission and a large Stokes shift. Tetrahedron Lett. 2015;58:3209–13.Google Scholar
  19. 19.
    Yang Y, Zhao Q, Feng W, Li F. Luminescent chemodosimeters for bioimaging. Chem Rev. 2012;113(1):192–270.CrossRefPubMedGoogle Scholar
  20. 20.
    Wang X, Sun J, Zhang W, Ma X, Lv J, Tang B. A near-infrared ratiometric fluorescent probe for rapid and highly sensitive imaging of endogenous hydrogen sulfide in living cells. Chem Sci. 2013;4(6):2551–6.CrossRefGoogle Scholar
  21. 21.
    Xiao Y, Guo Y, Dang R, Yan X, Xu P, Jiang P. A dansyl-based fluorescent probe for the highly selective detection of cysteine based on a d-PET switching mechanism. RSC Adv. 2017;7:21050–3.CrossRefGoogle Scholar
  22. 22.
    Lin VS, Chen W, Xian M, Chang CJ. Chemical probes for molecular imaging and detection of hydrogen sulfide and reactive sulfur species in biological systems. Chem Soc Rev. 2015;44(14):4596–618.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Zhang P, Nie X, Gao M, Zeng F, Qin A, Wu S. Tang BZ. A highly selective fluorescent nanoprobe based on AIE and ESIPT for imaging hydrogen sulfide in live cells and zebrafish. Mater Chem Front. 2017;1(5):838–45.Google Scholar
  24. 24.
    Xuan W, Sheng C, Cao Y, He W, Wang W. Fluorescent probes for the detection of hydrogen sulfide in biological systems. Angew Chem Int Ed. 2012;51(10):2282–4.CrossRefGoogle Scholar
  25. 25.
    Chen W, Rosser EW, Matsunaga T, Pacheco A, Akaike T, Xian M. The development of fluorescent probes for visualizing intracellular hydrogen polysulfides. Angew Chem Int Ed. 2015;54(47):13961–5.Google Scholar
  26. 26.
    Yang X, Guo Y, Strongin RM. Conjugate addition/cyclization sequence enables selective and simultaneous fluorescence detection of cysteine and homocysteine. Angew Chem Int Ed. 2011;50:10690–3.Google Scholar
  27. 27.
    Han C, Yang H, Chen M, Su Q, Feng W, Li F. Mitochondria-targeted near-infrared fluorescent off-on probe for selective detection of cysteine in living cells and in vivo. ACS Appl Mater Interfaces. 2015;7(50):27968–75.CrossRefPubMedGoogle Scholar
  28. 28.
    Wang Y, Zhu M, Jiang E, Hua R, Na R, Li QX. A simple and rapid turn on ESIPT fluorescent probe for colorimetric and ratiometric detection of biothiols in living cells. Sci Rep. 2017;7:4377.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Liu Y, Yu D, Ding S, Xiao Q, Guo J, Feng G. Rapid and ratiometric fluorescent detection of cysteine with high selectivity and sensitivity by a simple and readily available probe. ACS Appl Mater Interfaces. 2014;6(20):17543–50.CrossRefPubMedGoogle Scholar
  30. 30.
    Wang J, Li B, Zhao W, Zhang X, Luo X, Corkins ME, Cole SL, Wang C, Xiao Y, Bi X, Pang Y, McElroy CA, Bird AJ, Dong Y. Two-photon near infrared fluorescent turn-on probe toward cysteine and its imaging applications. ACS Sens. 2016;1(7):882–7.Google Scholar
  31. 31.
    Fu ZH, Han X, Shao Y, Fang J, Zhang ZH, Wang YW, et al. Fluorescein-based chromogenic and ratiometric fluorescence probe for highly selective detection of cysteine and its application in bioimaging. Anal Chem. 2017;89(3):1937–44.CrossRefPubMedGoogle Scholar
  32. 32.
    Qi Y, Huang Y, Li B, Zeng F, Wu S. Real-time monitoring of endogenous cysteine levels in vivo by near-infrared turn-on fluorescent probe with large Stokes shift. Anal Chem. 2018;90(1):1014–20.Google Scholar
  33. 33.
    Zheng M, Huang H, Zhou M, Wang Y, Zhang Y, Ye D, et al. Cysteine-mediated intracellular building of luciferin to enhance probe retention and fluorescence turn-on. Chem Eur J. 2015;21(29):10506–12.CrossRefPubMedGoogle Scholar
  34. 34.
    Lee YH, Ren WX, Han J, Sunwoo K, Lim JY, Kim JH, et al. Highly selective two-photon imaging of cysteine in cancerous cells and tissues. Chem Commun. 2015;51(76):14401–4.CrossRefGoogle Scholar
  35. 35.
    Ma DH, Kim D, Akisawa T, Lee KH, Kim KT, Ahn KH. An FITC-BODIPY FRET couple: application to selective, ratiometric detection and bioimaging of cysteine. Chem Asian J. 2015;10(4):894–902.CrossRefPubMedGoogle Scholar
  36. 36.
    Chen X, Zhou Y, Peng X, Yoon J. Fluorescent and colorimetric probes for detection of thiols. Chem Soc Rev. 2010;39(6):2120–35.CrossRefPubMedGoogle Scholar
  37. 37.
    Ouadahi K, Sbargoud K, Allard E, Larpent C. FRET-mediated pH-responsive dual fluorescent nanoparticles prepared via click chemistry. Nano. 2012;4(3):727–32.Google Scholar
  38. 38.
    Wang H, Zhang P, Hong Y, Zhao B, Yi P, Chen J. Ratiometric imaging of lysosomal hypochlorous acid enabled by FRET-based polymer dots. Polym Chem. 2017;8(37):5795–802.CrossRefGoogle Scholar
  39. 39.
    Chen J, Tang Y, Wang H, Zhang P, Li Y, Jiang J. Design and fabrication of fluorescence resonance energy transfer-mediated fluorescent polymer nanoparticles for ratiometric sensing of lysosomal pH. J Colloid Interface Sci. 2016;484:298–307.CrossRefPubMedGoogle Scholar
  40. 40.
    Dai X, Wang Z-Y, Du Z-F, Cui J, Miao J-Y, Zhao B-X. A colorimetric, ratiometric and water-soluble fluorescent probe for simultaneously sensing glutathione and cysteine/homocysteine. Anal Chim Acta. 2015;900:103–10.CrossRefPubMedGoogle Scholar
  41. 41.
    Kang J, Huo F, Chao J, Yin C. Nitroolefin-based BODIPY as a novel water-soluble ratiometric fluorescent probe for detection of endogenous thiols. Spectrochim Acta A. 2018;195:16–20.CrossRefGoogle Scholar
  42. 42.
    Song W, Duan W, Liu Y, Ye Z, Chen Y, Chen H, et al. Ratiometric detection of intracellular lysine and pH with one-pot synthesized dual emissive carbon dots. Anal Chem. 2017;89(24):13626–36.CrossRefPubMedGoogle Scholar
  43. 43.
    Yu C, Li X, Zeng F, Zheng F, Wu S. Carbon-dot-based ratiometric fluorescent sensor for detecting hydrogen sulfide in aqueous media and inside live cells. Chem Commun. 2013;49(4):403–5.CrossRefGoogle Scholar
  44. 44.
    Fu H, Ji Z, Chen X, Cheng A, Liu S, Gong P, et al. A versatile ratiometric nanosensing approach for sensitive and accurate detection of Hg2+ and biological thiols based on new fluorescent carbon quantum dots. Anal Bioanal Chem. 2017;409(9):2373–82.CrossRefPubMedGoogle Scholar
  45. 45.
    Baptista FR, Belhout S, Giordani S, Quinn S. Recent developments in carbon nanomaterial sensors. Chem Soc Rev. 2015;44(13):4433–53.CrossRefPubMedGoogle Scholar
  46. 46.
    Chen BB, Liu ZX, Zou HY, Huang CZ. Highly selective detection of 2,4,6-trinitrophenol by using newly developed terbium-doped blue carbon dots. Analyst. 2016;141(9):2676–781.CrossRefPubMedGoogle Scholar
  47. 47.
    Chen J, Li Y, Lv K, Zhong W, Wang H, Wu Z, et al. Cyclam-functionalized carbon dots sensor for sensitive and selective detection of copper(II) ion and sulfide anion in aqueous media and its imaging in live cells. Sensors Actuators B Chem. 2016;224:298–306.CrossRefGoogle Scholar
  48. 48.
    Ding C, Zhu A, Tian Y. Functional surface engineering of C-dots for fluorescent biosensing and in vivo bioimaging. Acc Chem Res. 2013;47(1):20–30.CrossRefPubMedGoogle Scholar
  49. 49.
    Yang W, Ni J, Luo F, Weng W, Wei Q, Lin Z, et al. Cationic carbon dots for modification-free detection of hyaluronidase via an electrostatic-controlled ratiometric fluorescence assay. Anal Chem. 2017;89(16):8384–90.CrossRefPubMedGoogle Scholar
  50. 50.
    Cao L, Wang X, Meziani MJ, Lu F, Wang H, Luo PG, et al. Carbon dots for multiphoton bioimaging. J Am Chem Soc. 2007;129(37):11318–9.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Shamsipur M, Barati A, Karami S. Long-wavelength, multicolor, and white-light emitting carbon-based dots: achievements made, challenges remaining, and applications. Carbon. 2017;124:429–72.CrossRefGoogle Scholar
  52. 52.
    Zhao F, Qian J, Quan F, Wu C, Zheng Y, Zhou L. Aconitic acid derived carbon dots as recyclable “on-off-on” fluorescent nanoprobes for sensitive detection of mercury(II) ions, cysteine and cellular imaging. RSC Adv. 2017;7(40):44178–85.Google Scholar
  53. 53.
    Yan F, Shi D, Zheng T, Yun K, Zhou X, Chen L. Carbon dots as nanosensor for sensitive and selective detection of Hg2+ and L-cysteine by means of fluorescence “off-on” switching. Sensors Actuators B Chem. 2016;224:926–35.Google Scholar
  54. 54.
    Amjadi M, Abolghasemi-Fakhri Z, Hallaj T. Carbon dots-silver nanoparticles fluorescence resonance energy transfer system as a novel turn-on fluorescent probe for selective determination of cysteine. J Photoch Photobio A. 2015;309:8–14.CrossRefGoogle Scholar
  55. 55.
    Huang H, Weng Y, Zheng L, Yao B, Weng W, Lin X. Nitrogen-doped carbon quantum dots as fluorescent probe for “off-on” detection of mercury ions, L-cysteine and iodide ions. J Colloid Interface Sci. 2017;506:373–8.Google Scholar
  56. 56.
    Li Y, Qin T, Ingle T, Yan J, He W, Yin JJ, et al. Differential genotoxicity mechanisms of silver nanoparticles and silver ions. Arch Toxicol. 2017;91(1):509–19.CrossRefPubMedGoogle Scholar
  57. 57.
    Nolan EM, Lippard SJ. Tools and tactics for the optical detection of mercuric ion. Chem Rev. 2008;108(9):3443–80.CrossRefPubMedGoogle Scholar
  58. 58.
    Zhang P, Li J, Li B, Xu J, Zeng F, Lv J, et al. A logic gate-based fluorescent sensor for detecting H2S and NO in aqueous media and inside live cells. Chem Commun. 2015;51(21):4414–6.CrossRefGoogle Scholar
  59. 59.
    Zhang X, Xiao Y, Qian X. A ratiometric fluorescent probe based on FRET for imaging Hg2+ ions in living cells. Angew Chem Int Ed. 2008;47(42):8025–9.CrossRefGoogle Scholar
  60. 60.
    Wang H, Zhang P, Chen J, Li Y, Yu M, Long Y, et al. Polymer nanoparticle-based ratiometric fluorescent probe for imaging Hg2+ ions in living cells. Sensors Actuators B Chem. 2017;242:818–24.CrossRefGoogle Scholar
  61. 61.
    Zhang P, Wang H, Hong Y, Yu M, Zeng R, Long Y, et al. Selective visualization of endogenous hypochlorous acid in zebrafish during lipopolysaccharide-induced acute liver injury using a polymer micelles-based ratiometric fluorescent probe. Biosens Bioelectron. 2018;99:318–24.CrossRefPubMedGoogle Scholar
  62. 62.
    Huang Y, Zhang P, Gao M, Zeng F, Qin A, Wu S, et al. Ratiometric detection and imaging of endogenous hypochlorite in live cells and in vivo achieved by using an aggregation induced emission (AIE)-based nanoprobe. Chem Commun. 2016;52(45):7288–91.CrossRefGoogle Scholar
  63. 63.
    Chen W, Pacheco A, Takano Y, Day JJ, Hanaoka K, Xian M. A single fluorescent probe to visualize hydrogen sulfide and hydrogen polysulfides with different fluorescence signals. Angew Chem Int Ed. 2016;55:9993–6.CrossRefGoogle Scholar
  64. 64.
    Song Z, Quan F, Xu Y, Liu M, Cui L, Liu J. Multifunctional N,S co-doped carbon quantum dots with pH- and thermo-dependent switchable fluorescent properties and highly selective detection of glutathione. Carbon. 2016;104:169–78.CrossRefGoogle Scholar
  65. 65.
    Xu H, Li Q, Wang L, He Y, Shi J, Tang B, et al. Nanoscale optical probes for cellular imaging. Chem Soc Rev. 2014;43(8):2650–61.CrossRefPubMedGoogle Scholar
  66. 66.
    Bhattacharya S, Sarkar R, Chakraborty B, Porgador A, Jelinek R. Nitric oxide sensing through azo-dye formation on carbon dots. ACS Sens. 2017;2(8):1215–24.Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, Hunan Province College Key Laboratory of QSAR/QSPR, Institute of Functional Materials, School of Chemistry and Chemical EngineeringHunan University of Science and TechnologyXiangtanChina
  2. 2.State Key Laboratory of Chemo/Biosensing and ChemometricsHunan UniversityChangshaChina
  3. 3.Department of StomatologyXiangtan Central HospitalXiangtanChina

Personalised recommendations