Advertisement

Analytical and Bioanalytical Chemistry

, Volume 410, Issue 22, pp 5583–5592 | Cite as

Identification of acetylated derivatives of zearalenone as novel plant metabolites by high-resolution mass spectrometry

  • Laura Righetti
  • Luca Dellafiora
  • Daniele Cavanna
  • Enrico Rolli
  • Gianni Galaverna
  • Renato Bruni
  • Michele Suman
  • Chiara Dall’Asta
Research Paper
Part of the following topical collections:
  1. Food Safety Analysis

Abstract

Zearalenone (ZEN) major biotransformation pathways described so far are based on glycosylation and sulfation, although acetylation of trichothecenes has been reported as well. We investigated herein the ZEN acetylation metabolism route in micropropagated durum wheat leaf, artificially contaminated with ZEN. We report the first experimental evidence of the formation of novel ZEN acetylated forms in wheat, attached both to the aglycone backbone as well as on the glucose moiety. Thanks to the advantages provided by high-resolution mass spectrometry, identification and structure annotation of 20 metabolites was achieved. In addition, a preliminary assessment of the toxicity of the annotated metabolites was performed in silico focusing on the toxicodynamic of ZEN group toxicity. All the metabolites showed a worse fitting within the estrogen receptor pocket in comparison with ZEN. Nevertheless, possible hydrolysis to the respective parent compounds (i.e., ZEN) may raise concern from the health perspective because these are well-known xenoestrogens. These results further enrich the biotransformation profile of ZEN, providing a helpful reference for assessing the risks to animals and humans.

Graphical abstract

Keywords

Food safety Masked mycotoxins Acetylation Plant biotransformation 

Notes

Acknowledgements

The authors acknowledge with gratitude Mr. Dante Catellani from Advanced Laboratory Research (Barilla G.R. F.lli SpA) for his technical assistance.

Compliance with ethical standards

Conflict of interest

Michele Suman is employee of Barilla G.R. F.lli SpA. Daniele Cavanna has received a PhD grant by Barilla G.R. F.lli SpA. All the other authors declare that they have no conflict of interest.

Supplementary material

216_2018_1066_MOESM1_ESM.pdf (338 kb)
ESM 1 (PDF 338 kb)

References

  1. 1.
    Berthiller F, Crews C, Dall'Asta C, Saeger SD, Haesaert G, Karlovsky P, et al. Masked mycotoxins: a review. Mol Nutr Food Res. 2013;57:165–86.CrossRefPubMedGoogle Scholar
  2. 2.
    EFSA Panel on Contaminants in the Food Chain (CONTAM). Risks for animal health related to the presence of zearalenone and its modified forms in feed, p. 123. EFSA J. 2017;15(7):4851.Google Scholar
  3. 3.
    Berthiller F, Werner U, Sulyok M, Krska R, Hauser MT, Schuhmacher R. Liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) determination of phase II metabolites of the mycotoxin zearalenone in the model plant Arabidopsis thaliana. Food Addit Contam. 2006;23:1194–200.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Kluger B, Bueschl C, Lemmens M, Michlmayr H, Malachova A, Koutnik A, et al. Biotransformation of the mycotoxin deoxynivalenol in fusarium resistant and susceptible near isogenic wheat lines. Plos One. 2015;10(3):e0119656.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Meng-Reiterer J, Bueschl C, Rechthaler J, Berthiller F, Lemmens M, Schuhmacher R. Metabolism of HT-2 Toxin and T-2 toxin in oats. Toxins. 2016;8:364.CrossRefPubMedCentralGoogle Scholar
  6. 6.
    Meng-Reiterer J, Varga E, Nathanail AV, Bueschl C, Rechthaler J, McCormick SP, et al. Tracing the metabolism of HT-2 toxin and T-2 toxin in barley by isotope-assisted untargeted screening and quantitative LC-HRMS analysis. Anal Bioanal Chem. 2015;407:8019–33.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Kovalsky Paris MP, Schweiger W, Hametner C, StuÈckler R, Muehlbauer GJ, Varga E, et al. Zearalenone-16-O-glucoside: a new masked mycotoxin. J Agric Food Chem. 2014;62:1188–9.CrossRefGoogle Scholar
  8. 8.
    Righetti L, Rolli E, Galaverna G, Suman M, Bruni R, Dall’Asta C. Plant organ cultures as masked mycotoxin biofactories: deciphering the fate of zearalenone in micropropagated durum wheat roots and leaves. Plos One. 2017;12(11):e0187247.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    EFSA Panel on Contaminants in the Food Chain (CONTAM). Appropriateness to set a group health-based guidance value for zearalenone and its modified forms. EFSA J. 2016;14(4):4425.Google Scholar
  10. 10.
    Kowalska K, Habrowska-Górczyńska DE, Piastowska-Ciesielska AW. Zearalenone as an endocrine disruptor in humans. Environ. Toxicol. Pharmacol. 2016;48:141–9.CrossRefPubMedGoogle Scholar
  11. 11.
    De Boevre M, Jacxsens L, Lachat C, Eeckhout M, Di Mavungu JD, Audenaert K, et al. Human exposure to mycotoxins and their masked forms through cereal-based foods in Belgium. Toxicol Lett. 2013;218:281–92.CrossRefPubMedGoogle Scholar
  12. 12.
    Nathanail AV, Syvahuoko J, Malachova A, Jestoi M, Varga E, Michlmayr H, et al. Simultaneous determination of major type A and B trichothecenes, zearalenone and certain modified metabolites in Finnish cereal grains with a novel liquid chromatography-tandem mass spectrometric method. Anal Bioanal Chem. 2015;407:4745–55.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    De Boevre M, Vanheule A, Audenaert K, Bekaert B, Diana Di Mavungu J, Werbrouk S, et al. Detached leaf in vitro model for masked mycotoxin biosynthesis and subsequent analysis of unknown conjugates. World Mycotox J. 2014;7:305–12.CrossRefGoogle Scholar
  14. 14.
    Schmeitzl C, Warth B, Fruhmann P, Michlmayr H, Malachová A, Berthiller F, et al. The metabolic fate of deoxynivalenol and its acetylated derivatives in a wheat suspension culture: identification and detection of DON-15-O-glucoside, 15-acetyl-DON-3-O-glucoside, and 15-acetyl-DON-3-sulfate. Toxins. 2015;7:3112–26.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Muñoz L, Castro JL, Cardelle M, Castedo L, Riguera R. Acetylated mycotoxins from Fusarium graminearum. Phytochemistry. 1989;28(1):83–5.CrossRefGoogle Scholar
  16. 16.
    Pinton P, Tsybulskyy D, Lucioli J, Laffitte J, Callu P, Lyazhri F, et al. Toxicity of deoxynivalenol and its acetylated derivatives on the intestine: differential effects on morphology, barrier function, tight junction proteins, and mitogen-activated protein kinases. Toxicol Sci. 2012;130:180–90.CrossRefPubMedGoogle Scholar
  17. 17.
    Dall'Erta A, Cirlini M, Dall'Asta M, Del Rio D, Galaverna G, Dall'Asta C. Masked mycotoxins are efficiently hydrolyzed by human colonic microbiota releasing their aglycones. Chem Res Toxicol. 2013;26(3):305–12.CrossRefPubMedGoogle Scholar
  18. 18.
    Gratz SW, Dinesh R, Yoshinari T, Holtrop G, Richardson AJ, Duncan G, et al. Masked trichothecene and zearalenone mycotoxins withstand digestion and absorption in the upper GI tract but are efficiently hydrolyzed by human gut microbiota in vitro. Mol Nutr Food Res. 2017;61(4):1600680–90.CrossRefGoogle Scholar
  19. 19.
    Gratz SW. Do plant-bound masked mycotoxins contribute to toxicity? Toxins. 2017;9:85.CrossRefPubMedCentralGoogle Scholar
  20. 20.
    Eriksen GS, Pettersson H, Lindberg JE. Absorption, metabolism, and excretion of 3-acetyl DON in pigs. Arch Anim Nutr. 2003;57:335–45.CrossRefGoogle Scholar
  21. 21.
    Dellafiora L, Ruotolo R, Perotti A, Cirlini M, Galaverna G, Cozzini P, et al. Molecular insights on xenoestrogenic potential of zearalenone-14-glucoside through a mixed in vitro/in silico approach. Food Chem Toxicol. 2017;108:257–66.CrossRefPubMedGoogle Scholar
  22. 22.
    Dellafiora L, Galaverna G, Dall'Asta C. An in silico perspective on the toxicodynamic of tetrodotoxin and analogues – a tool for supporting the hazard identification. Toxicon. 2017;138:107–18.CrossRefPubMedGoogle Scholar
  23. 23.
    Ehrlich VA, Dellafiora L, Mollergues J, Dall'Asta C, Serrant P, Marin-Kuan M, et al. Hazard assessment through hybrid in vitro/in silico approach: the case of zearalenone. ALTEX. 2015;32(4):275–86.PubMedGoogle Scholar
  24. 24.
    Phillips C, Roberts LR, Schade M, Bazin R, Bent A, Davies NL, et al. Design and structure of stapled peptides binding to estrogen receptors. J Am Chem Soc. 2011;133(25):9696–9.CrossRefPubMedGoogle Scholar
  25. 25.
    Dellafiora L, Galaverna G, Righi F, Cozzini P, Dall'Asta C. Assessing the hydrolytic fate of the masked mycotoxin zearalenone-14-glucoside – a warning light for the need to look at the “maskedome”. Food Chem Toxicol. 2017;99:9–16.CrossRefPubMedGoogle Scholar
  26. 26.
    Baroni M, Cruciani G, Sciabola S, Perruccio F, Mason JS. A common reference framework for analyzing/comparing proteins and ligands. Fingerprints for Ligands and Proteins (FLAP): theory and application. J Chem Inf Model. 2007;47(2):279–94.CrossRefPubMedGoogle Scholar
  27. 27.
    Carosati E, Sciabola S, Cruciani G. Hydrogen bonding interactions of covalently bonded fluorine atoms: from crystallographic data to a new angular function in the GRID force field. J Med Chem. 2004;47(21):5114–25.CrossRefPubMedGoogle Scholar
  28. 28.
    Kellogg EG, Abraham DJ. Hydrophobicity: is LogP(o/w) more than the sum of its parts? Eur J Med Chem. 2000;37(7/8):651–61.CrossRefGoogle Scholar
  29. 29.
    Cozzini P, Dellafiora L. In silico approach to evaluate molecular interaction between mycotoxins and the estrogen receptors ligand binding domain: a case study on zearalenone and its metabolites. Toxicol Lett. 2012;214(1):81–5.CrossRefPubMedGoogle Scholar
  30. 30.
    Cozzini P, Fornabaio M, Marabotti A, Abraham DJ, Kellogg GE, Mozzarelli A. Simple, intuitive calculations of free energy of binding for protein-ligand complexes. 1. Models without explicit constrained water. J Med Chem. 2002;45(12):2469–83.CrossRefPubMedGoogle Scholar
  31. 31.
    Ruttkies C, Schymanski EL, Wolf S, Hollender J, Neumann S. MetFrag relaunched: incorporating strategies beyond in silico fragmentation. J Cheminform. 2016;8:3.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Katzenellenbogen JA. The 2010 Philip S. Portoghese Medicinal Chemistry Lectureship: addressing the “core issue” in the design of estrogen receptor ligands. J Med Chem. 2011;54(15):5271–82.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Shier WT, Shier AC, Xie W, Mirocha CJ. Structure–activity relationships for human estrogenic activity in zearalenone mycotoxins. Toxicon. 2001;39(9):1435–8.CrossRefPubMedGoogle Scholar
  34. 34.
    Ajandouz EH, Berdah S, Moutardier V, Bege T, Birnbaum DJ, Perrier J, et al. Hydrolytic fate of 3/15-acetyldeoxynivalenol in humans: specific deacetylation by the small intestine and liver revealed using in vitro and ex vivo approaches. Toxins. 2016;8:232.CrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Laura Righetti
    • 1
  • Luca Dellafiora
    • 1
  • Daniele Cavanna
    • 1
    • 2
  • Enrico Rolli
    • 3
  • Gianni Galaverna
    • 1
  • Renato Bruni
    • 1
  • Michele Suman
    • 2
  • Chiara Dall’Asta
    • 1
  1. 1.Department of Food and DrugUniversity of ParmaParmaItaly
  2. 2.Barilla G.R. F.lli SpA, Advanced Laboratory ResearchParmaItaly
  3. 3.Deparment of Chemistry, Life Sciences and Environmental SustainabilityUniversity of ParmaParmaItaly

Personalised recommendations