Analytical and Bioanalytical Chemistry

, Volume 410, Issue 22, pp 5617–5628 | Cite as

Determination of phthalic acid esters in different baby food samples by gas chromatography tandem mass spectrometry

  • Bárbara Socas-Rodríguez
  • Javier González-Sálamo
  • Antonio V. Herrera-Herrera
  • Álvaro Santana-Mayor
  • Javier Hernández-BorgesEmail author
Research Paper
Part of the following topical collections:
  1. Food Safety Analysis


In this work, a new method has been developed for the determination of 14 phthalic acid esters (i.e., benzylbutyl phthalate (BBP), bis-2-n-butoxyethyl phthalate (DBEP), dibutyl phthalate (DBP), dicyclohexyl phthalate (DCHP), bis-2-ethoxyethyl phthalate (DEEP), diethyl phthalate (DEP), diisodecyl phthalate (DIDP), diisononyl phthalate (DINP), bis-isopentyl phthalate (DIPP), bis (2-methoxyethyl) phthalate (DMEP), dimethyl phthalate (DMP), di-n-octyl phthalate (DNOP), bis-n-pentyl phthalate (DNPP), dipropyl phthalate (DPP)) and one adipate (bis (2-ethylhexyl) adipate (DEHA)) in different baby foods. Separation was carried out by gas chromatography triple quadrupole tandem mass spectrometry while the previous extraction of the samples was carried out using the QuEChERS method. The methodology was validated for four baby food samples (two fruit compotes of different compositions and two meat and fish purees with vegetables) using dibutyl phthalate-3,4,5,6-d4 (DBP-d4) as internal standard. Determination coefficients (R2) of matrix-matched calibration curves were above 0.9922 in all cases while relative recovery values ranged between 70 and 120%, with relative standard deviation values below 19%. The limits of quantification of the method ranged between 0.03 and 1.11 μg/kg. Finally, the analysis of commercially available samples was carried out finding the presence of BBP, DEHA, DEP, DIDP, and DPP in some of the studied samples.


Phthalic acid esters Baby foods QuEChERS Gas chromatography Tandem mass spectrometry 



J.G.S. would like to thank the Canary Agency of Economy, Industry, Trade and Knowledge of the Government of the Canary Islands for the FPI fellowship (co-financed with an 85% from European Social Funds). The authors would like to acknowledge the use of the Research Support General Service (SEGAI) of the University of La Laguna.

Funding information

This work was supported by the Spanish Ministry of Economy and Competitiveness (project CTQ2014-57195-P).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

Supplementary material

216_2018_977_MOESM1_ESM.pdf (431 kb)
ESM 1 (PDF 430 kb)


  1. 1.
    Rahman M, Brazel C. The plasticizer market: an assessment of traditional plasticizers and research trends to meet new challenges. Prog Polym Sci. 2004;29:1223–48.CrossRefGoogle Scholar
  2. 2.
    Staples CA. Phthalate esters. Berlin: Springer; 2003.Google Scholar
  3. 3.
    Yang J, Li Y, Wang Y, Ruan J, Zhang J, Sun C. Recent advances in analysis of phthalate esters in foods. TrAC-Trend Anal Chem. 2015;72:10–26.CrossRefGoogle Scholar
  4. 4.
    Russo MV, Avino P, Perugini L, Notardonato I. Extraction and GC-MS analysis of phthalate esters in food matrices: a review. RSC Adv. 2015;5:37023–43.CrossRefGoogle Scholar
  5. 5.
    Benjamin S, Masai E, Kamimura N, Tagahashi K, Anderson RC, Faisal PA. J Hazard Mater. 2017;340:360–83.CrossRefPubMedGoogle Scholar
  6. 6.
    Giulivo M, López de Alda M, Capri E, Barceló D. Human exposure to endocrine disrupting compounds: their role in reproductive systems, metabolic syndrome and breast cancer. A review. Environ Res. 2016;151:251–64.CrossRefPubMedGoogle Scholar
  7. 7.
    Schettler T. Human exposure to phthalates via consumer products. Int J Androl. 2006;29:134–9.CrossRefPubMedGoogle Scholar
  8. 8.
    Lovekamp-Swan T, Davis B. Mechanisms of phthalate ester toxicity in the female reproductive system. Environ Health Persp. 2003;111:139–45.CrossRefGoogle Scholar
  9. 9.
    Commission Regulation (EU) No. 10/2011 of 14 January 2011 on plastic materials and articles intended to come into contact with food.Google Scholar
  10. 10.
  11. 11.
    Fromme H, Gruber L, Seckin E, Raab U, Zimmermann S, Kiranoglu M, et al. Phthalates and their metabolites in breast milk—results from the Bavarian Monitoring of Breast Milk (BAMBI). Environ Int. 2011;37:715–22.CrossRefPubMedGoogle Scholar
  12. 12.
    Calafat AM, Slakman AR, Silva MJ, Herbert AR, Needham LL. Automated solid phase extraction and quantitative analysis of human milk for 13 phthalate metabolites. J Chromatogr B. 2004;805:49–56.CrossRefGoogle Scholar
  13. 13.
    Guerranti C, Sbordoni I, Fanello EL, Borghini F, Corsi I, Focardi SE. Levels of phthalates in human milk samples from central Italy. Microchem J. 2013;107:178–81.CrossRefGoogle Scholar
  14. 14.
    Zhu JP, Phillips SP, Feng YL, Yang XF. Phthalate esters in human milk: concentration variations over a 6-month postpartum time. Environ Sci Technol. 2006;40:5276–81.CrossRefPubMedGoogle Scholar
  15. 15.
    Gruber L, Wolz G, Piringer O. Analysis of phthalates in baby food. Deutsche Lebensmittel-Rundschau. 1998;94:177–9.Google Scholar
  16. 16.
    Cirillo T, Latini G, Castaldi MA, Dipaola L, Fasano E, Esposito F, et al. Exposure to di-2-ethylhexylphthalate, di-n-butyl phthalate and bisphenol A through infant formulas. J Agric Food Chem. 2015;63:3303–10.CrossRefPubMedGoogle Scholar
  17. 17.
    Petersen JH, Breindahl T. Plasticizers in total diet samples, baby food and infant formulae. Food Addit Contam. 2000;17:133–41.CrossRefPubMedGoogle Scholar
  18. 18.
    Bradbury J. UK panics over phthalates in babymilk formulae. Lancet. 1996;347:1541.CrossRefPubMedGoogle Scholar
  19. 19.
    Yano K, Hirosawa N, Sakamoto Y, Katayama H, Moriguchi T, Asaoka K. Phthalate levels in baby milk powders sold in several countries. Bull Environ Contam Toxicol. 2005;74:373–9.CrossRefPubMedGoogle Scholar
  20. 20.
    Sorensen LK. Determination of phthalates in milk and milk products by liquid chromatography/tandem mass spectrometry. Rapid Commun Mass Sp. 2006;20:1135–433.CrossRefGoogle Scholar
  21. 21.
    Tsumura Y, Ishimitsu S, Kaihara A, Yoshii K, Tonogai Y. Phthalates, adipates, citrate and some of the other plasticizers detected in Japanese retail foods: a survey. J Health Sci. 2002;48:493–502.CrossRefGoogle Scholar
  22. 22.
    Gärtner S, Balski M, Koch M, Nehls I. Analysis and migration of phthalates in infant food packed in recycled paperboard. J Agric Food Chem. 2009;57:10675–81.CrossRefPubMedGoogle Scholar
  23. 23.
    Russo MV, Avino P, Notardonato I. Fast analysis of phthalates in freeze-dried baby foods by ultrasound-vortex-assisted liquid-liquid microextraction coupled with gas chromatography-ion trap/mass spectrometry. J Chromatogr A. 2016;1474:1–7.CrossRefPubMedGoogle Scholar
  24. 24.
    Ma YW, Hashi Y, Ji F, Lin JM. Determination of phthalates in fruit jellies by dispersive SPE coupled with HPLC-MS. J Sep Sci. 2010;33:251–7.CrossRefPubMedGoogle Scholar
  25. 25.
    Cirillo T, Fasano E, Castaldi E, Montuori P, Amodio Cocchieri R. Children’s exposure to di(2-ethylhexyl)phthalate and dibutylphthalate plasticizers from school meals. J Agr Food Chem. 2011;59:10532–8.CrossRefGoogle Scholar
  26. 26.
    Cariou R, Larvor F, Monteau F, Marchand P, Bichon E, Dervilly-Pinel G, et al. Measurement of phthalates diesters in food using gas chromatography–tandem mass spectrometry. Food Chem. 2016;196:211–9.CrossRefPubMedGoogle Scholar
  27. 27.
    Anastassiades M, Lehotay SJ, Štajnbaher D, Schenck FJ. Fast and easy multiresidue method employing acetonitrile extraction/partitioning and “dispersive solid-phase extraction” for the determination of pesticide residues in produce. J AOAC Int. 2003;86:412–31.PubMedGoogle Scholar
  28. 28.
    Lehotay SJ, De Kok A, Hiemstra M, Van Bodegraven P. J AOAC Int. 2005;88:595–614.PubMedGoogle Scholar
  29. 29.
    Koesukwiwat U, Lehotay SJ, Leepipatpiboon N. Fast, low-pressure gas chromatography triple quadrupole tandem mass spectrometry for analysis of 150 pesticide residues in fruits and vegetables. J Chromatogr A. 2011;1218:7039–50.CrossRefPubMedGoogle Scholar
  30. 30.
    Lehotay SJ, Son KA, Kwon H, Koesukwiwat U, Fud W, Mastovska K, et al. Comparison of QuEChERS sample preparation methods for the analysis of pesticide residues in fruits and vegetables. J Chromatogr A. 2010;1217:2548–60.CrossRefPubMedGoogle Scholar
  31. 31.
    González-Curbelo MA, Socas-Rodríguez B, Herrera-Herrera AV, González-Sálamo J, Hernández-Borges J, Rodríguez-Delgado MA. The QuEChERS method: evolution and applications. TrAC Trend Anal Chem. 2015;71:169–85.CrossRefGoogle Scholar
  32. 32.
    Fasano E, Cirillo T, Esposito F, Lacorte S. Migration of monomers and plasticizers from packed foods and heated microwave foods using QuEChERS sample preparation and gas chromatography/mass spectrometry. LWT Food Sci Technol. 2015;64:1015–21.CrossRefGoogle Scholar
  33. 33.
    Jia W, Chu X, Ling Y, Huang J, Chang J. Analysis of phthalates in milk and milk products by liquid chromatography coupled to quadrupole orbitrap high-resolution mass spectrometry. J Chromatogr A. 2014;1362:110–8.CrossRefPubMedGoogle Scholar
  34. 34.
    Dong W, Sun B, Sun J, Zheng F, Sun X, Huang M, et al. Matrix effects in detection of phthalate esters from wheat by a modified QuEChERS method with GC/MS. Food Anal Method. 2017;10:3166–80.CrossRefGoogle Scholar
  35. 35.
    Yin P, Liu X, Chen H, Pan R, Ma G. Determination of 16 phthalate esters in tea samples using a modified QuEChERS sample preparation method combined with GC-MS/MS. Food Addit Contam. 2014;31:1406–13.CrossRefGoogle Scholar
  36. 36.
    Yadav S, Rai S, Srivastava AK, Panchal S, Patel DK, Sharma VP, et al. Determination of pesticide and phthalate residues in tea by QuEChERS method and their fate in processing. Environ Sci Pollut Res. 2017;24:3074–83.CrossRefGoogle Scholar
  37. 37.
    Xu D, Deng X, Fang E, Zheng X, Zhou Y, Lin L, et al. Determination of 23 phthalic acid esters in food by liquid chromatography tandem mass spectrometry. J Chromatogr A. 2014;1324:49–56.CrossRefPubMedGoogle Scholar
  38. 38.
    Guo Y, Kannan K. Challenges encountered in the analysis of phthalate esters in foodstuffs and other biological matrices. Anal Bioanal Chem. 2012;404:2539–54.CrossRefPubMedGoogle Scholar
  39. 39.
    González-Sálamo J, Socas-Rodríguez B, Hernández-Borges J, Rodríguez-Delgado MA. Determination of phthalic acid esters in water samples using core-shell poly(dopamine) magnetic nanoparticles and gas chromatography tandem mass spectrometry. J Chromatogr A. 2017;1530:35–44.CrossRefPubMedGoogle Scholar
  40. 40.
    Otero P, Saha SK Moane S, Barron J, Clancy G, Murray P. Improved method for rapid detection of phthalates in bottled water by gas chromatography-mass spectrometry. J Chromatogr B. 2015;997:229–35.CrossRefGoogle Scholar
  41. 41.
    Yue ME, Lin Q, Li Q, Xu J, Jiang TF. Determination of PAEs by integrative coupling method of headspace in-tube microextraction and reverse-flow micellar electrokinetic capillary chromatography. Food Anal Method. 2017;10:3565–71.CrossRefGoogle Scholar
  42. 42.
    Yue ME, Xu J, Hou WG. Determination of five phthalate esters in running water and milk by micellar electrokinetic capillary chromatography. J Anal Chem. 2015;70:1147–52.CrossRefGoogle Scholar
  43. 43.
    Hsieh SY, Wang CC, Wu SM. Microemulsion electrokinetic chromatography for analysis of phthalates in soft drinks. Food Chem. 2013;141:3486–91.CrossRefPubMedGoogle Scholar
  44. 44.
    Guo BY, Wen B, Shan XQ, Zhang SZ, Lin JM. Separation and determination of phthalates by micellar electrokinetic chromatography. J Chromatogr A. 2005;1095:189–92.CrossRefPubMedGoogle Scholar
  45. 45.
    Commission Decision 2002/657/EC implementing Council Directive 96/23/EC concerning the performance of analytical methods and the interpretation of results.Google Scholar
  46. 46.
    Barp L, Purcaro G, Franchina FA, Zoccali M, Sciarrone D, Tranchida PQ, et al. Determination of phthalate esters in vegetable oils using direct immersion solid-phase microextraction and fast gas chromatography coupled with triple quadrupole mass spectrometry. Anal Chim Acta. 2015;887:237–44.CrossRefPubMedGoogle Scholar
  47. 47.
    Liao C, Yang P, Xie Z, Zhao Y, Cheng X, Zhang Y, et al. Application of GC-triple quadrupole MS in the quantitative confirmation of polycyclic aromatic hydrocarbons and phthalic acid esters in soil. J Chromatogr Sci. 2010;48:161–6.CrossRefPubMedGoogle Scholar
  48. 48.
    Yin P, Chen H, Liu X, Wang Q, Jiang Y, Pan R. Mass spectral fragmentation pathways of phthalate esters by gas chromatography-tandem mass spectrometry. Anal Lett. 2014;47:1579–88.CrossRefGoogle Scholar
  49. 49.
    Rahman MM, El-Aty A, Shim JH. Matrix enhancement effect: a blessing or a curse for gas chromatography?—a review. Anal Chim Acta. 2013;801:14–21.CrossRefPubMedGoogle Scholar
  50. 50.
    Pano-Farias NS, Ceballos-Magaña SG, Muñiz-Valencia R, Gonzalez J. Validation and assessment of matrix effect and uncertainty of a gas chromatography coupled to mass spectrometry method for pesticides in papaya and avocado samples. J Food Drug Anal. 2017;25:501–9.CrossRefPubMedGoogle Scholar
  51. 51.
    Koot K, Zawisza B, Marguí E, Queralt I, Hidalgo M, Sitko R. Dispersive micro solid-phase extraction using multi walled carbon nanotubes combined with portable total-reflection X-ray fluorescence spectrometry for the determination of trace amounts of Pb and Cd in water samples. J Anal At Spectrom. 2013;28:736–42.CrossRefGoogle Scholar
  52. 52.
    Chen XH, Zhou LX, Zhao YG, Pan SD, Jin MC. Application of nano ring amino-functionalized magnetic polymer dispersive micro-solid-phase extraction and ultra fast liquid chromatography-tandem mass spectrometry in dicyandiamide residue analysis of powdered milk. Talanta. 2014;119:187–92.CrossRefPubMedGoogle Scholar
  53. 53.
  54. 54.
    Cao XL. Phthalate esters in foods: sources, occurrence, and analytical methods. Compr Rev Food Sci Food Saf. 2010;9:21–43.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Bárbara Socas-Rodríguez
    • 1
  • Javier González-Sálamo
    • 2
  • Antonio V. Herrera-Herrera
    • 3
  • Álvaro Santana-Mayor
    • 2
  • Javier Hernández-Borges
    • 2
    Email author
  1. 1.Servicio General de Apoyo a la Investigación (SEGAI)Universidad de La Laguna (ULL)San Cristóbal de La LagunaSpain
  2. 2.Departamento de Química, Unidad Departamental de Química Analítica, Facultad de CienciasUniversidad de La Laguna (ULL)San Cristóbal de La LagunaSpain
  3. 3.Instituto Universitario de Bio-Orgánica Antonio GonzálezUniversidad de La Laguna (ULL)San Cristóbal de La LagunaSpain

Personalised recommendations