Analytical and Bioanalytical Chemistry

, Volume 410, Issue 11, pp 2793–2804 | Cite as

Rapid two-dimensional ALSOFAST-HSQC experiment for metabolomics and fluxomics studies: application to a 13C-enriched cancer cell model treated with gold nanoparticles

  • Martina Palomino SchätzleinEmail author
  • Johanna Becker
  • David Schulze-Sünninghausen
  • Antonio Pineda-Lucena
  • José Raul Herance
  • Burkhard LuyEmail author
Research Paper


Isotope labeling enables the use of 13C-based metabolomics techniques with strongly improved resolution for a better identification of relevant metabolites and tracing of metabolic fluxes in cell and animal models, as required in fluxomics studies. However, even at high NMR-active isotope abundance, the acquisition of one-dimensional 13C and classical two-dimensional 1H,13C-HSQC experiments remains time consuming. With the aim to provide a shorter, more efficient alternative, herein we explored the ALSOFAST-HSQC experiment with its rapid acquisition scheme for the analysis of 13C-labeled metabolites in complex biological mixtures. As an initial step, the parameters of the pulse sequence were optimized to take into account the specific characteristics of the complex samples. We then applied the fast two-dimensional experiment to study the effect of different kinds of antioxidant gold nanoparticles on a HeLa cancer cell model grown on 13C glucose-enriched medium. As a result, 1H,13C-2D correlations could be obtained in a couple of seconds to few minutes, allowing a simple and reliable identification of various 13C-enriched metabolites and the determination of specific variations between the different sample groups. Thus, it was possible to monitor glucose metabolism in the cell model and study the antioxidant effect of the coated gold nanoparticles in detail. Finally, with an experiment time of only half an hour, highly resolved 1H,13C-HSQC spectra using the ALSOFAST-HSQC pulse sequence were acquired, revealing the isotope-position-patterns of the corresponding 13C-nuclei from carbon multiplets.

Graphical abstract

Fast NMR applied to metabolomics and fluxomics studies with gold nanoparticles


Fast NMR HSQC Metabolomics Fluxomics Gold nanoparticles 



Part of the work was supported by grants CP13/00252 and PI16/02064 from Carlos III Health Institute, SAF2014-53977-R and SAF2017-89229-R from Ministerio de Economía y Competitividad, and by the European Regional Development Fund (ERDF). M.P.-S. was partially supported by an EMBO short-term fellowship. Eva Castelló has contributed to the work with technical help. B.L. thanks the HGF programme BIFTM, the DFG (instrumentation facility Pro2NMR and LU 835/13-1), and Fonds der Chemischen Industrie for financial support. We also want to thank Martin Koos for helpful discussions.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

216_2018_961_MOESM1_ESM.pdf (645 kb)
ESM 1 (PDF 645 kb)


  1. 1.
    Kaddurah-Daouk R, Krishnan KR. Metabolomics: a global biochemical approach to the study of central nervous system diseases. Neuropsychopharmacology. 2009;34(1):173–86.CrossRefGoogle Scholar
  2. 2.
    Wishart DS. Applications of metabolomics in drug discovery and development. Drugs R D. 2008;9(5):307–22.CrossRefGoogle Scholar
  3. 3.
    Hall RD, Brouwer ID, Fitzgerald MA. Plant metabolomics and its potential application for human nutrition. Physiol Plant. 2008;132(2):162–75.Google Scholar
  4. 4.
    Cevallos-Cevallos JM, Rouseff R, Reyes-De-Corcuera JI. Untargeted metabolite analysis of healthy and Huanglongbing-infected orange leaves by CE-DAD. Electrophoresis. 2009;30(7):1240–7.CrossRefGoogle Scholar
  5. 5.
    Rivas-Ubach A, Perez-Trujillo M, Sardans J, Gargallo-Garriga A, Parella T, Penuelas J. Ecometabolomics: optimized NMR-based method. Methods Ecol Evol. 2013;4(5):464–73.CrossRefGoogle Scholar
  6. 6.
    Bollard ME, Stanley EG, Lindon JC, Nicholson JK, Holmes E. NMR-based metabonomic approaches for evaluating physiological influences on biofluid composition. NMR Biomed. 2005;18(3):143–62.CrossRefGoogle Scholar
  7. 7.
    Yuan J, Bennett BD, Rabinowitz JD. Kinetic flux profiling for quantitation of cellular metabolic fluxes. Nat Protoc. 2008;3(8):1328–40.CrossRefGoogle Scholar
  8. 8.
    Zwingmann C, Leibfritz D. Regulation of glial metabolism studied by 13C-NMR. NMR Biomed. 2003;16(6–7):370–99.CrossRefGoogle Scholar
  9. 9.
    Jans AW, Leibfritz D. A 13C NMR study on fluxes into the Krebs cycle of rabbit renal proximal tubular cells. NMR Biomed. 1989;1(4):171–6.CrossRefGoogle Scholar
  10. 10.
    Heuner K, Eisenreich W. The intracellular metabolism of legionella by isotopologue profiling. Methods Mol Biol. 2013;954:163–81.CrossRefGoogle Scholar
  11. 11.
    Niedenfuhr S, Wiechert W, Noh K. How to measure metabolic fluxes: a taxonomic guide for (13)C fluxomics. Curr Opin Biotechnol. 2015;34:82–90.CrossRefGoogle Scholar
  12. 12.
    Mahrous EA, Farag MA. Two dimensional NMR spectroscopic approaches for exploring plant metabolome: a review. J Adv Res. 2015;6(1):3–15.CrossRefGoogle Scholar
  13. 13.
    Gómez J, Brezmes J, Mallol R, Rodríguez MA, Vinaixa M, Salek RM, et al. Dolphin: a tool for automatic targeted metabolite profiling using 1D and 2D (1)H-NMR data. Anal Bioanal Chem. 2014;406(30):7967–76.CrossRefGoogle Scholar
  14. 14.
    Bingol K, Li D, Zhang B, Bruschweiler R. Comprehensive metabolite identification strategy using multiple two-dimensional NMR spectra of a complex mixture implemented in the COLMARm web server. Anal Chem. 2016;88(24):12411–8.CrossRefGoogle Scholar
  15. 15.
    Massou S, Nicolas C, Letisse F, Portais JC. NMR-based fluxomics: quantitative 2D NMR methods for isotopomers analysis. Phytochemistry. 2007;68(16–18):2330–40.CrossRefGoogle Scholar
  16. 16.
    Nath J, Smith T, Hollis A, Ebbs S, Canbilen SW, Tennant DA, et al. Ludwig C: (13)C glucose labelling studies using 2D NMR are a useful tool for determining ex vivo whole organ metabolism during hypothermic machine perfusion of kidneys. Transplant Res. 2016;5:7.CrossRefGoogle Scholar
  17. 17.
    Giraudeau P, Frydman L. Ultrafast 2D NMR: an emerging tool in analytical spectroscopy. Annu Rev Anal Chem (Palo Alto, Calif). 2014;7:129–61.CrossRefGoogle Scholar
  18. 18.
    Frueh DP, Goodrich AC, Mishra SH, Nichols SR. NMR methods for structural studies of large monomeric and multimeric proteins. Curr Opin Struct Biol. 2013;23(5):734–9.CrossRefGoogle Scholar
  19. 19.
    Vitorge B, Bieri S, Humam M, Christen P, Hostettmann K, Munoz O, et al. High-precision heteronuclear 2D NMR experiments using 10-ppm spectral window to resolve carbon overlap. Chem Commun (Camb). 2009;8:950–2.CrossRefGoogle Scholar
  20. 20.
    Schanda P. Fast-pulsing longitudinal relaxation optimized techniques: enriching the toolbox of fast biomolecular NMR spectroscopy. Prog Nucl Mag Res Spec. 2009;55:238–65.CrossRefGoogle Scholar
  21. 21.
    Vitorge B, Bodenhausen G, Pelupessy P. Speeding up nuclear magnetic resonance spectroscopy by the use of SMAll recovery times—SMART NMR. J Magn Reson. 2010;207(1):149–52.CrossRefGoogle Scholar
  22. 22.
    Mueller L. Alternate HMQC experiments for recording HN and HC-correlation spectra in proteins at high throughput. J Biomol NMR. 2008;42(2):129–37.CrossRefGoogle Scholar
  23. 23.
    Schulze-Sünninghausen D, Becker J, Koos MRM, Luy B. Improvements, extensions, and practical aspects of rapid ASAP-HSQC and ALSOFAST-HSQC pulse sequences for studying small molecules at natural abundance. J Magn Reson. 2017;281:151–61.CrossRefGoogle Scholar
  24. 24.
    Schulze-Sünnighausen D, Becker J, Luy B. Rapid heteronuclear single quantum correlation NMR at natural abundance. J Am Chem Soc. 2014;136:1242–5.CrossRefGoogle Scholar
  25. 25.
    Kupce E, Freeman R. SPEED: single point evaluation of the evolution dimension. Mag Reson Chem. 2007;45:711–3.CrossRefGoogle Scholar
  26. 26.
    Becker J, Luy B. CLIP-ASAP-HSQC for fast and accurate extraction of one-bond couplings from isotropic and partially aligned molecules. Magn Reson Chem. 2015;53(11):878–85.CrossRefGoogle Scholar
  27. 27.
    Marchand J, Martineau E, Guitton Y, Dervilly-Pinel G, Giraudeau P. Multidimensional NMR approaches towards highly resolved, sensitive and high-throughput quantitative metabolomics. Curr Opin Biotechnol. 2017;43:49–55.CrossRefGoogle Scholar
  28. 28.
    Le Guennec A, Dumez JN, Giraudeau P, Caldarelli S. Resolution-enhanced 2D NMR of complex mixtures by non-uniform sampling. Magn Reson Chem. 2015;53(11):913–20.CrossRefGoogle Scholar
  29. 29.
    Le Guennec A, Tea I, Antheaume I, Martineau E, Charrier B, Pathan M, et al. Fast determination of absolute metabolite concentrations by spatially encoded 2D NMR: application to breast cancer cell extracts. Anal Chem. 2012;84(24):10831–7.CrossRefGoogle Scholar
  30. 30.
    Rai RK, Sinha N. Fast and accurate quantitative metabolic profiling of body fluids by nonlinear sampling of 1H-13C two-dimensional nuclear magnetic resonance spectroscopy. Anal Chem. 2012;84(22):10005–11.CrossRefGoogle Scholar
  31. 31.
    Sharma R, Gogna N, Singh H, Dorai K. Fast profiling of metabolite mixtures using chemometric analysis of a speeded-up 2D heteronuclear correlation NMR experiment. RSC Adv. 2017;7:29860–70.CrossRefGoogle Scholar
  32. 32.
    Zhang A, Sun H, Xu H, Qiu S, Wang X. Cell metabolomics. OMICS. 2013;17(10):495–501.CrossRefGoogle Scholar
  33. 33.
    Murday JS, Siegel RW, Stein J, Wright JF. Translational nanomedicine: status assessment and opportunities. Nanomedicine. 2009;5(3):251–73.CrossRefGoogle Scholar
  34. 34.
    Fadeel B, Garcia-Bennett AE. Better safe than sorry: understanding the toxicological properties of inorganic nanoparticles manufactured for biomedical applications. Adv Drug Deliv Rev. 2010;62(3):362–74.CrossRefGoogle Scholar
  35. 35.
    Menchón C, Martín R, Apostolova N, Victor VM, Alvaro M, Herance JR, et al. Gold nanoparticles supported on nanoparticulate ceria as a powerful agent against intracellular oxidative stress. Small. 2012;8(12):1895–903.CrossRefGoogle Scholar
  36. 36.
    Esumi K, Takei N, Yoshimura T. Antioxidant-potentiality of gold-chitosan nanocomposites. Colloids and Surfaces B-Biointerfaces. 2003;32(2):117–23.CrossRefGoogle Scholar
  37. 37.
    Atreya HS, Szyperski T. G-matrix Fourier transform NMR spectroscopy for complete protein resonance assignment. Proc Natl Acad Sci U S A. 2004;101(26):9642–7.CrossRefGoogle Scholar
  38. 38.
    Marion D. Fast acquisition of NMR spectra using Fourier transform of non-equispaced data. J Biomol NMR. 2005;32(2):141–50.CrossRefGoogle Scholar
  39. 39.
    Kazimierczuk K, Orekhov VY. Accelerated NMR spectroscopy by using compressed sensing. Angew Chem Int Ed Engl. 2011;50(24):5556–9.CrossRefGoogle Scholar
  40. 40.
    SHAKA A, BARKER P, FREEMAN R. Computer-optimized decoupling scheme for wideband applications and low-level operation. J Magn Reson. 1985;64(3):547–52.Google Scholar
  41. 41.
    Wishart DS, Jewison T, Guo AC, Wilson M, Knox C, Liu Y, et al. HMDB 3.0—the human metabolome database in 2013. Nucleic Acids Res. 2013;41(Database issue):D801–7.Google Scholar
  42. 42.
    Ulrich EL, Akutsu H, Doreleijers JF, Harano Y, Ioannidis YE, Lin J, et al. BioMagResBank. Nucleic Acids Res. 2008;36(Database issue):D402–8.Google Scholar
  43. 43.
    Liu J, Segal MR, Kelly MJ, Pelton JG, Kim M, James TL, et al. 13C NMR metabolomic evaluation of immediate and delayed mild hypothermia in cerebrocortical slices after oxygen-glucose deprivation. Anesthesiology. 2013;119(5):1120–36.CrossRefGoogle Scholar
  44. 44.
    Faiz H, Conjard-Duplany A, Boghossian M, Martin G, Baverel G, Ferrier B. Cadmium chloride inhibits lactate gluconeogenesis in isolated human renal proximal tubules: a cellular metabolomic approach with 13C-NMR. Arch Toxicol. 2011;85(9):1067–77.CrossRefGoogle Scholar
  45. 45.
    Marion D, Wüthrich K. Application of phase sensitive two-dimensional correlated spectroscopy (COSY) for measurements of 1H-1H spin-spin coupling constants in proteins. Biochem Biophys Res Commun. 1983;113(3):967–74.CrossRefGoogle Scholar
  46. 46.
    Ernst RR, Bodenhausen G, Wokaun A: Principles of nuclear magnetic resonance in one and two dimensions, vol. 14; 1987.Google Scholar
  47. 47.
    Pilatus U, Aboagye E, Artemov D, Mori N, Ackerstaff E, Bhujwalla ZM. Real-time measurements of cellular oxygen consumption, pH, and energy metabolism using nuclear magnetic resonance spectroscopy. Magn Reson Med. 2001;45(5):749–55.CrossRefGoogle Scholar
  48. 48.
    Lucas LH, Larive CK, Wilkinson PS, Huhn S. Progress toward automated metabolic profiling of human serum: comparison of CPMG and gradient-filtered NMR analytical methods. J Pharm Biomed Anal. 2005;39(1–2):156–63.CrossRefGoogle Scholar
  49. 49.
    Barathmanikanth S, Kalishwaralal K, Sriram M, Pandian SR, Youn HS, Eom S, et al. Anti-oxidant effect of gold nanoparticles restrains hyperglycemic conditions in diabetic mice. J Nanobiotechnology. 2010;8:16.CrossRefGoogle Scholar
  50. 50.
    Boccard J, Rutledge DN. A consensus orthogonal partial least squares discriminant analysis (OPLS-DA) strategy for multiblock Omics data fusion. Anal Chim Acta. 2013;769:30–9.CrossRefGoogle Scholar
  51. 51.
    Wiklund S, Johansson E, Sjostrom L, Mellerowicz EJ, Edlund U, Shockcor JP, et al. Visualization of GC/TOF-MS-based metabolomics data for identification of biochemically interesting compounds using OPLS class models. Anal Chem. 2008;80(1):115–22.CrossRefGoogle Scholar
  52. 52.
    Love DC, Hanover JA. The hexosamine signaling pathway: deciphering the "O-GlcNAc code". Sci STKE. 2005;2005(312):re13.Google Scholar
  53. 53.
    Wells L, Vosseller K, Hart GW. A role for N-acetylglucosamine as a nutrient sensor and mediator of insulin resistance. Cell Mol Life Sci. 2003;60(2):222–8.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institut für Organische ChemieKarlsruher Institut für Technologie (KIT)KarlsruheGermany
  2. 2.Institut für Biologische Grenzflächen 4 - Magnetische ResonanzKarlsruher Institut für Technologie (KIT)KarlsruheGermany
  3. 3.Centro de Investigación Príncipe FelipeValenciaSpain
  4. 4.Bruker BioSpin GmbHEttlingenGermany
  5. 5.Drug Discovery UnitInstituto de Investigación Sanitaria La FeValenciaSpain
  6. 6.Medical Molecular Imaging Research GroupVall d’Hebron Research InstituteBarcelonaSpain

Personalised recommendations