Analytical and Bioanalytical Chemistry

, Volume 410, Issue 11, pp 2781–2791 | Cite as

Tuning of gold nanoclusters sensing applications with bovine serum albumin and bromelain for detection of Hg2+ ion and lambda-cyhalothrin via fluorescence turn-off and on mechanisms

  • Jigna R. Bhamore
  • Sanjay Jha
  • Hirakendu Basu
  • Rakesh Kumar Singhal
  • Z. V. P. Murthy
  • Suresh Kumar Kailasa
Research Paper

Abstract

Herein, fluorescent gold nanoclusters (Au NCs) were obtained by one-pot synthetic method using bovine serum albumin (BSA) and bromelain as templates. As-synthesized fluorescent Au NCs were stable and showed bright red fluorescence under UV lamp at 365 nm. The fluorescent Au NCs exhibit the emission intensity at 648 nm when excited at 498 nm. Various techniques were used such as spectroscopy (UV-visible, fluorescence, and Fourier-transform infrared), high-resolution transmission electron microscopy, and dynamic light scattering for the characterization of fluorescent Au NCs. The values of I0/I at 648 nm are proportional to the concentrations of Hg2+ ion in the range from 0.00075 to 5.0 μM and of lambda-cyhalothrin in the range from 0.01 to 10 μM with detection limits of 0.0003 and 0.0075 μM for Hg2+ ion and lambda-cyhalothrin, respectively. The practical application of the probe was successfully demonstrated by analyzing Hg2+ ion and lambda-cyhalothrin in water samples. In addition, Au NCs used as probes for imaging of Simplicillium fungal cells. These results indicated that the as-synthesized Au NCs have proven to be promising fluorescent material for the sensing of Hg2+ ion and lambda-cyhalothrin in environmental and for imaging of microorganism cells in biomedical applications.

Keywords

Au NCs BSA Bromelain Hg2+ ion Lambda-cyhalothrin Optical spectroscopy 

Notes

Acknowledgments

We gratefully acknowledge financial support by Department of Science and Technology, Government of India (EMR/2016/002621/IPC). Ms. Bhamore acknowledges the Director, SVNIT, Surat for financial support under the Doctoral Program.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

216_2018_958_MOESM1_ESM.pdf (437 kb)
ESM 1 (PDF 425 kb)

References

  1. 1.
    Nolan EM, Lippard SJ. Tools and tactics for the optical detection of mercuric ion. Chem Rev. 2008;108:3443–80.CrossRefGoogle Scholar
  2. 2.
    Chen C, Wang R, Guo L, Fu N, Dong H, Yuan Y. A Squaraine-based colorimetric and “turn on” fluorescent sensor for selective detection of Hg2+ in an aqueous medium. Org Lett. 2011;13:1162–5.CrossRefGoogle Scholar
  3. 3.
    Mello JV, Finney NS. Reversing the discovery paradigm: a new approach to the combinatorial discovery of fluorescent chemosensors. J Am Chem Soc. 2005;127:10124–5.CrossRefGoogle Scholar
  4. 4.
    Yoon S, Miller EW, He Q, Do PH, Chang C. A bright and specific fluorescent sensor for mercury in water, cells, and tissue. J Angew Chem Int Ed. 2007;119:6778–81.CrossRefGoogle Scholar
  5. 5.
    Environmental Protection Agency, Office of Water: Washington, DC, U.S. EPA. 2001.Google Scholar
  6. 6.
    Mercury update: impact on fish advisories, EPA Fact Sheet EPA-823-F-01-001.Google Scholar
  7. 7.
    Hanna CP, Tyson JF, McIntosh S. Determination of total mercury in waters and urine by flow injection atomic absorption spectrometry procedures involving on- and off-line oxidation of organomercury species. Anal Chem. 1993;65:653–6.CrossRefGoogle Scholar
  8. 8.
    Wang Y, Zhou L, Wang S, Li J, Tang J, Wang S, et al. Sensitive and selective detection of Hg2+ based on an electrochemical platform of PDDA functionalized rGO and glutaraldehyde crosslinked chitosan composite film. RSC Adv. 2016;6:69815–21.CrossRefGoogle Scholar
  9. 9.
    Goswami S, Sen D, Das NK. A new highly selective, ratiometric and colorimetric fluorescence sensor for Cu2+ with a remarkable red shift in absorption and emission spectra based on internal charge transfer. Org Lett. 2010;12:856–9.CrossRefGoogle Scholar
  10. 10.
    Bennun L, Gomez J. Determination of mercury by total-reflection X-ray fluorescence using amalgamation with gold. Spectrochim Acta B. 1997;52:1195–200.CrossRefGoogle Scholar
  11. 11.
    Moreton JA, Delves HT. Simple direct method for the determination of total mercury levels in blood and urine and nitric acid digests of fish by inductively coupled plasma mass spectrometry. J Anal At Spectrom. 1998;13:659–65.CrossRefGoogle Scholar
  12. 12.
    He ML, Troiano J, Wang A, Goh K. Environmental chemistry, ecotoxicity, and fate of lambda-cyhalothrin. In: Whitacre DM, editor. Rev Environ Contam Toxicol, vol. 195. New York: Springer; 2008. p. 71–91.CrossRefGoogle Scholar
  13. 13.
    Hintzen EP, Lydy MJ, Belden JB. Occurrence and potential toxicity of pyrethroids and other insecticides in bed sediments of urban streams in central Texas. Environ Pollut. 2009;157:110–1.CrossRefGoogle Scholar
  14. 14.
    Chen S, Deng Y, Chang C, Lee J, Cheng Y, Cui Z, et al. Pathway and kinetics of cyhalothrin biodegradation by Bacillus thuringiensis strain ZS-19. Sci Rep. 2015;5:8784–93.CrossRefGoogle Scholar
  15. 15.
    Wang X, Zhao X, Liu X, Li Y, Fu L, Hu J, et al. Homogeneous liquid–liquid extraction combined with gas chromatography–electron capture detector for the determination of three pesticide residues in soils. Anal Chim Acta. 2008;620:162–9.CrossRefGoogle Scholar
  16. 16.
    Lofty HM, El-A A, El-Aleem AA, Monir HH. Determination of insecticides malathion and lambda-cyhalothrin residues in zucchini by gas chromatography. Bull Fac Pharm Cairo Univ. 2013;51:255–60.CrossRefGoogle Scholar
  17. 17.
    Huang XH, Zhao XH, Lu XT, Tian HP, Xu AJ, Liu Y, et al. Simultaneous determination of 50 residual pesticides in Flos Chrysanthemi using accelerated solvent extraction and gas chromatography. J Chromatogr B. 2014;967:1–7.CrossRefGoogle Scholar
  18. 18.
    Deme P, Azmeera T, Devi LAP, Jonnalagadda PR, Prasad RBN, Vijaya Sarathi UVR. An improved dispersive solid-phase extraction clean-up method for the gas chromatography–negative chemical ionisation tandem mass spectrometric determination of multiclass pesticide residues in edible oils. Food Chem. 2014;142:144–51.CrossRefGoogle Scholar
  19. 19.
    Esteve-Turrillas FA, Pastor A, Guardia MDL. Comparison of different mass spectrometric detection techniques in the gas chromatographic analysis of pyrethroid insecticide residues in soil after microwave-assisted extraction. Anal Bioanal Chem. 2006;384:801–9.CrossRefGoogle Scholar
  20. 20.
    Barrek S, Paisse O, Grenier-Loustalot MF. Determination of residual pesticides in olive oil by GC–MS and HPLC–MS after extraction by size-exclusion chromatography. Anal Bioanal Chem. 2003;376:355–9.CrossRefGoogle Scholar
  21. 21.
    Wang J, Gao L, Han D, Pan J, Qiu H, Li H, et al. Optical detection of λ-cyhalothrin by core–shell fluorescent molecularly imprinted polymers in Chinese spirits. J Agric Food Chem. 2015;63:2392–9.CrossRefGoogle Scholar
  22. 22.
    Tao Y, Li MQ, Ren JS, Qu XG. Metal nanoclusters: novel probes for diagnostic and therapeutic applications. Chem Soc Rev. 2015;44:8636–63.CrossRefGoogle Scholar
  23. 23.
    Jin R. Atomically precise metal nanoclusters: stable sizes and optical properties. Nano. 2015;7:1549–65.Google Scholar
  24. 24.
    Song XR, Goswami N, Yang HH, Xie J. Functionalization of metal nanoclusters for biomedical applications. Analyst. 2016;141:3126–40.CrossRefGoogle Scholar
  25. 25.
    Zheng J, Nicovich PR, Dickson RM. Highly fluorescent noble-metal quantum dots. Annu Rev Phys Chem. 2007;58:409–31.CrossRefGoogle Scholar
  26. 26.
    Hsu NY, Microwave-assisted LYW. Synthesis of bovine serum albumin–gold nanoclusters and their fluorescence-quenched sensing of Hg2+ ions. New J Chem. 2016;40:1155–61.CrossRefGoogle Scholar
  27. 27.
    Liu Y, Li H, Guo B, Wei L, Chen B, Zhang Y. Gold nanoclusters as switch-off fluorescent probe for detection of uric acid based on the inner filter effect of hydrogen peroxide-mediated enlargement of gold nanoparticles. Biosens Bioelectron. 2017;91:734–40.CrossRefGoogle Scholar
  28. 28.
    Yang X, Gan L, Han L, Li D, Wang J, Wang E. Facile preparation of chiral penicillamine protected gold nanoclusters and their applications in cell imaging. Chem Commun. 2013;49:2302–4.CrossRefGoogle Scholar
  29. 29.
    Xie J, Zheng Y, Ying JY. Protein-directed synthesis of highly fluorescent gold nanoclusters. J Am Chem Soc. 2009;131:888–9.CrossRefGoogle Scholar
  30. 30.
    Selvaprakash K, Chen YC. Detection of ricin by using gold nanoclusters functionalized with chicken egg white proteins as sensing probes. Biosens Bioelectron. 2017;92:410–6.CrossRefGoogle Scholar
  31. 31.
    Yan X, Li H, Hu T, Su X. A novel fluorimetric sensing platform for highly sensitive detection of organophosphorus pesticides by using egg white-encapsulated gold nanoclusters. Biosens Bioelectron. 2017;91:232–7.CrossRefGoogle Scholar
  32. 32.
    Negishi Y, Nobusada K, Tsukuda T. Glutathione-protected gold clusters revisited: bridging the gap between gold(I)−thiolate complexes and thiolate-protected gold nanocrystals. J Am Chem Soc. 2005;127:5261–70.CrossRefGoogle Scholar
  33. 33.
    Sun J, Yang F, Yang X. Synthesis of functionalized fluorescent gold nanoclusters for acid phosphatase sensing. Nano. 2015;7:16372–80.Google Scholar
  34. 34.
    Chen Y, Wang Y, Wang C, Li W, Zhou H, Jiao H, et al. Papain-directed synthesis of luminescent gold nanoclusters and the sensitive detection of Cu2+. J Colloid Interface Sci. 2013;396:63–8.CrossRefGoogle Scholar
  35. 35.
    Shi H, Ou MY, Cao JP, Chen GF. Synthesis of ovalbumin-stabilized highly fluorescent gold nanoclusters and their application as an Hg2+ sensor. RSC Adv. 2015;5:86740–5.CrossRefGoogle Scholar
  36. 36.
    Zang J, Li C, Zhou K, Dong H, Chen B, Wang F, et al. Nanomolar Hg2+ detection using β-lactoglobulin-stabilized fluorescent gold nanoclusters in beverage and biological media. Anal Chem. 2016;88:10275–83.CrossRefGoogle Scholar
  37. 37.
    Bhamore JR, Jha S, Mungara AK, Singhal RK, Sonkeshariya D, Kailasa SK. One-step green synthetic approach for the preparation of multicolor emitting copper nanoclusters and their applications in chemical species sensing and bioimaging. Biosens Bioelectron. 2016;80:243–8.CrossRefGoogle Scholar
  38. 38.
    Xu S, Gao T, Feng X, Mao Y, Liu P, Yu X, et al. Dual ligand co-functionalized fluorescent gold nanoclusters for “turn on” sensing of glutathione in tumor cells. J Mater Chem B. 2016;4:1270–5.CrossRefGoogle Scholar
  39. 39.
    Chen LY, Wang CW, Yuan Z, Chang HT. Fluorescent gold nanoclusters: recent advances in sensing and imaging. Anal Chem. 2015;87:216–29.CrossRefGoogle Scholar
  40. 40.
    Jianping X, Yuangang Z, Jackie YY. Highly selective and ultrasensitive detection of Hg2+ based on fluorescence quenching of Au nanoclusters by Hg2+–Au+ interactions. Chem Commun. 2010;46:961–3.CrossRefGoogle Scholar
  41. 41.
    Chen PC, Chiang CK, Chang HT. Synthesis of fluorescent BSA–Au NCs for the detection of Hg2+ ions. J Nanopart Res. 2013;15:1336–45.CrossRefGoogle Scholar
  42. 42.
    Guo CL, Irudayaraj J. Fluorescent ag clusters via a protein-directed approach as a Hg(II) ion sensor. Anal Chem. 2011;83:2883–9.CrossRefGoogle Scholar
  43. 43.
    Deng L, Zhou Z, Li J, Li T, Dong S. Fluorescent silver nanoclusters in hybridized DNA duplexes for the turn-on detection of Hg2+ ions. Chem Commun. 2011;47:11065–7.CrossRefGoogle Scholar
  44. 44.
    Li C, Wei C. DNA-templated silver nanocluster as a label-free fluorescent probe for the highly sensitive and selective detection of mercury ions. Sensors Actuators B Chem. 2017;242:563–8.CrossRefGoogle Scholar
  45. 45.
    Hu X, Wang W, Huang Y. Copper nanocluster-based fluorescent probe for sensitive and selective detection of Hg2+ in water and food stuff. Talanta. 2016;154:409–15.CrossRefGoogle Scholar
  46. 46.
    Jha MK, Patra AK, Gadhia M, Ravi PM, Hegde AG, Multivariate SPK. Statistical interpretation of physico-chemical and radiological parameters of tapi river water due to the operation of kakrapar atomic power station. Int. J Environ Prot. 2012;2:22–9.Google Scholar
  47. 47.
    Bhamore JR, Jha S, Singhal RK, Kailasa SK. Synthesis of water dispersible fluorescent carbon nanocrystals from Syzygium cumini fruits for the detection of Fe3+ ion in water and biological samples and imaging of Fusarium avenaceum cells. J Fluoresc. 2017;27:125–34.CrossRefGoogle Scholar
  48. 48.
    Saineelima B, D’souza SL, Jha S, Kailasa SK. Imaging of bacterial and fungal cells using fluorescent carbon dots prepared from Carica papaya juice. J Fluoresc. 2015;25:803–10.CrossRefGoogle Scholar
  49. 49.
    Mehta VN, Jha S, Kailasa SK. One-pot green synthesis of carbon dots by using Saccharum officinarum juice for fluorescent imaging of bacteria (Escherichia coli) and yeast (Saccharomyces cerevisiae) cells. Mater Sci Eng C. 2014;38:20–7.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Jigna R. Bhamore
    • 1
  • Sanjay Jha
    • 2
  • Hirakendu Basu
    • 3
  • Rakesh Kumar Singhal
    • 3
  • Z. V. P. Murthy
    • 4
  • Suresh Kumar Kailasa
    • 1
  1. 1.Department of Applied ChemistryS. V. National Institute of TechnologySuratIndia
  2. 2.Gujarat Agricultural Biotechnology InstituteNavsari Agricultural UniversitySuratIndia
  3. 3.Analytical Chemistry Division, Bhabha Atomic Research CenterMumbaiIndia
  4. 4.Chemical Engineering DepartmentS. V. National Institute of TechnologySuratIndia

Personalised recommendations