Advertisement

Analytical and Bioanalytical Chemistry

, Volume 410, Issue 19, pp 4737–4748 | Cite as

Miniaturized dispersive liquid-liquid microextraction and MALDI MS using ionic liquid matrices for the detection of bacterial communication molecules and virulence factors

  • Jan Leipert
  • Ingrid Bobis
  • Sabine Schubert
  • Helmut Fickenscher
  • Matthias Leippe
  • Andreas Tholey
Research Paper
Part of the following topical collections:
  1. Ionic Liquids as Tunable Materials in (Bio)Analytical Chemistry

Abstract

The identification and quantification of molecules involved in bacterial communication are major prerequisites for the understanding of interspecies interactions at the molecular level. We developed a procedure allowing the determination of 2-heptyl-4(1H)-quinolone (HHQ) and 2-heptyl-3-hydroxy-4(1H)-quinolone (PQS) and the virulence factor pyocyanin (PYO) formed by the Gram-negative bacterium Pseudomonas aeruginosa. The method is based on dispersive liquid-liquid microextraction from small supernatant volumes (below 10 μL) followed by quantitative matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS). The use of ionic liquid matrix led to a lowered limit of detection for pyocyanin and, due to suppression of matrix background signals, easy to interpret mass spectra compared to crystalline matrices. Using an isotope-labeled pyocyanin standard synthesized in small-scale synthesis, quantitative analysis spanning approximately one order of magnitude (0.5 to 250 fmol) was feasible. The method was successfully applied to the detection of the signaling molecules PQS and HHQ in cultures of P. aeruginosa strains isolated from sputum of cystic fibrosis patients and allowed a highly sensitive quantification of PYO from these cultures. Hence, the developed method bears the potential to be used for screening purposes in clinical settings and will help to decipher the molecular basis of bacterial communication.

Graphical abstract

Ionic liquid matrices for the detection and quantification of the toxin pyocyanin and other signaling molecules from P. aeruginosa by MALDI MS.

Keywords

Biofilm Cystic fibrosis Pseudomonas aeruginosa Pyocyanin Quorum sensing Resistance 

Notes

Acknowledgments

This work was funded by the SFB1182 “Function and Origin of Metaorganisms,” project A1, and by the Cluster of Excellence “Inflammation at Interfaces.” We thank Nadja Schmitz for the assistance with the experiments and Heidrun Ließegang as well as Corinna Wriedt for the technical help in the preparation of the bacterial cultures.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

This article does not contain any studies with human or animal subjects. Based on the approval of the Ethics committee (Ethik-Kommission) of the Medical Faculty of the Christian Albrecht University of Kiel (D479/15 amendment of Aug 18, 2016) and according to the ethical standards, sputum samples were obtained from patients with cystic fibrosis after informed consent and Pseudomonas aeruginosa isolates were cultivated.

Supplementary material

216_2018_937_MOESM1_ESM.pdf (1.6 mb)
ESM 1 (PDF 1668 kb)

References

  1. 1.
    Govan JR, Deretic V. Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkholderia cepacia. Microbiol Rev. 1996;60:539–74.Google Scholar
  2. 2.
    Cohen TS, Prince A. Cystic fibrosis: a mucosal immunodeficiency syndrome. Nat Med. 2012;18:509–19.CrossRefGoogle Scholar
  3. 3.
    Quinn RA, Phelan VV, Whiteson KL, Garg N, Bailey BA, Lim YW, et al. Microbial, host and xenobiotic diversity in the cystic fibrosis sputum metabolome. ISME J. 2016;10:1483–98.CrossRefGoogle Scholar
  4. 4.
    Waters CM, Bassler BL. Quorum sensing: cell-to-cell communication in bacteria. Annu Rev Cell Dev Biol. 2005;21:319–46.CrossRefGoogle Scholar
  5. 5.
    LaSarre B, Federle MJ. Exploiting quorum sensing to confuse bacterial pathogens. Microbiol Mol Biol Rev. 2013;77:73–111.CrossRefGoogle Scholar
  6. 6.
    Camilli A, Bassler BL. Bacterial small-molecule signaling pathways. Science. 2006;311:1113–6.CrossRefGoogle Scholar
  7. 7.
    Pesci EC, Milbank JBJ, Pearson JP, McKnight S, Kende AS, Greenberg EP, et al. Quinolone signaling in the cell-to-cell communication system of Pseudomonas aeruginosa. Proc Natl Acad Sci. 1999;96:11229–34.CrossRefGoogle Scholar
  8. 8.
    Diggle SP, Lumjiaktase P, Dipilato F, Winzer K, Kunakorn M, Barrett DA, et al. Functional genetic analysis reveals a 2-alkyl-4-quinolone signaling system in the human pathogen Burkholderia pseudomallei and related bacteria. Chem Biol. 2006;13:701–10.CrossRefGoogle Scholar
  9. 9.
    Diggle SP, Matthijs S, Wright VJ, Fletcher MP, Chhabra SR, Lamont IL, et al. The Pseudomonas aeruginosa 4-quinolone signal molecules HHQ and PQS play multifunctional roles in quorum sensing and iron entrapment. Chem Biol. 2007;14:87–96.CrossRefGoogle Scholar
  10. 10.
    Diggle SP, Cornelis P, Williams P, Cámara M. 4-Quinolone signalling in Pseudomonas aeruginosa: old molecules, new perspectives. Int J Med Microbiol. 2006;296:83–91.CrossRefGoogle Scholar
  11. 11.
    Lépine F, Milot S, Déziel E, He J, Rahme LG. Electrospray/mass spectrometric identification and analysis of 4-hydroxy-2-alkylquinolines (HAQs) produced by Pseudomonas aeruginosa. J Am Soc Mass Spectrom. 2004;15:862–9.CrossRefGoogle Scholar
  12. 12.
    Heeb S, Fletcher MP, Chhabra SR, Diggle SP, Williams P, Cámara M. Quinolones: from antibiotics to autoinducers. FEMS Microbiol Rev. 2011;35:247–74.CrossRefGoogle Scholar
  13. 13.
    Mavrodi DV, Bonsall RF, Delaney SM, Soule MJ, Phillips G, Thomashow LS. Functional analysis of genes for biosynthesis of pyocyanin and phenazine-1-carboxamide from Pseudomonas aeruginosa PAO1. J Bacteriol. 2001;183:6454–65.CrossRefGoogle Scholar
  14. 14.
    Žukovskaja O, Jahn IJ, Weber K, Cialla-May D, Popp J. Detection of Pseudomonas aeruginosa metabolite pyocyanin in water and saliva by employing the SERS technique. Sensors. 2017;17:1704.CrossRefGoogle Scholar
  15. 15.
    Pastells C, Pascual N, Sanchez-Baeza F, Marco M-P. Immunochemical determination of pyocyanin and 1-hydroxyphenazine as potential biomarkers of Pseudomonas aeruginosa infections. Anal Chem. 2016;88:1631–8.CrossRefGoogle Scholar
  16. 16.
    O’Malley YQ, Reszka KJ, Spitz DR, Denning GM, Britigan BE. Pseudomonas aeruginosa pyocyanin directly oxidizes glutathione and decreases its levels in airway epithelial cells. Am J Physiol-Lung Cell Mol Physiol. 2004;287:L94–L103.CrossRefGoogle Scholar
  17. 17.
    Wilson R, Pitt T, Taylor G, Watson D, MacDermot J, Sykes D, et al. Pyocyanin and 1-hydroxyphenazine produced by Pseudomonas aeruginosa inhibit the beating of human respiratory cilia in vitro. J Clin Invest. 1987;79:221.CrossRefGoogle Scholar
  18. 18.
    Kanthakumar K, Taylor G, Tsang KW, Cundell DR, Rutman A, Smith S, et al. Mechanisms of action of Pseudomonas aeruginosa pyocyanin on human ciliary beat in vitro. Infect Immun. 1993;61:2848–53.Google Scholar
  19. 19.
    Dietrich LEP, Price-Whelan A, Petersen A, Whiteley M, Newman DK. The phenazine pyocyanin is a terminal signalling factor in the quorum sensing network of Pseudomonas aeruginosa. Mol Microbiol. 2006;61:1308–21.CrossRefGoogle Scholar
  20. 20.
    Hunter RC, Klepac-Ceraj V, Lorenzi MM, Grotzinger H, Martin TR, Newman DK. Phenazine content in the cystic fibrosis respiratory tract negatively correlates with lung function and microbial complexity. Am J Respir Cell Mol Biol. 2012;47:738–45.CrossRefGoogle Scholar
  21. 21.
    Buzid A, Shang F, Reen FJ, Muimhneacháin EÓ, Clarke SL, Zhou L, et al. Molecular signature of Pseudomonas aeruginosa with simultaneous nanomolar detection of quorum sensing signaling molecules at a boron-doped diamond electrode. Sci Rep. 2016;6:srep30001.CrossRefGoogle Scholar
  22. 22.
    Barr HL, Halliday N, Cámara M, Barrett DA, Williams P, Forrester DL, Simms R, Smyth AR, Honeybourne D, Whitehouse JL, Nash EF, Dewar J, Clayton A, Knox AJ, Fogarty AW. Pseudomonas aeruginosa quorum sensing molecules correlate with clinical status in cystic fibrosis. Eur Respir J. 2015;46:1046–54.Google Scholar
  23. 23.
    Lépine F, Déziel E, Milot S, Rahme LG. A stable isotope dilution assay for the quantification of the Pseudomonas quinolone signal in Pseudomonas aeruginosa cultures. Biochim Biophys Acta Gen Subj. 2003;1622:36–41.CrossRefGoogle Scholar
  24. 24.
    Martínez JL. Interkingdom signaling and its consequences for human health. Virulence. 2014;5:243–4.CrossRefGoogle Scholar
  25. 25.
    Ortori CA, Halliday N, Cámara M, Williams P, Barrett DA. LC-MS/MS quantitative analysis of quorum sensing signal molecules. Methods Mol Biol Clifton NJ. 2014;1149:255–70.CrossRefGoogle Scholar
  26. 26.
    Wilson R, Sykes DA, Watson D, Rutman A, Taylor GW, Cole PJ. Measurement of Pseudomonas aeruginosa phenazine pigments in sputum and assessment of their contribution to sputum sol toxicity for respiratory epithelium. Infect Immun. 1988;56:2515–7.Google Scholar
  27. 27.
    Fletcher MP, Diggle SP, Cámara M, Williams P. Biosensor-based assays for PQS, HHQ and related 2-alkyl-4-quinolone quorum sensing signal molecules. Nat Protoc. 2007;2:1254–62.CrossRefGoogle Scholar
  28. 28.
    Cohen LH, Gusev AI. Small molecule analysis by MALDI mass spectrometry. Anal Bioanal Chem. 2002;373:571–86.CrossRefGoogle Scholar
  29. 29.
    Pusch W, Kostrzewa M. Application of MALDI-TOF mass spectrometry in screening and diagnostic research. Curr Pharm Des. 2005;11:2577–91.CrossRefGoogle Scholar
  30. 30.
    Tholey A, Wittmann C, Kang M-J, Bungert D, Hollemeyer K, Heinzle E. Derivatization of small biomolecules for optimized matrix-assisted laser desorption/ionization mass spectrometry. J Mass Spectrom. 2002;37:963–73.CrossRefGoogle Scholar
  31. 31.
    Armstrong DW, Zhang L-K, He L, Gross ML. Ionic liquids as matrixes for matrix-assisted laser desorption/ionization mass spectrometry. Anal Chem. 2001;73:3679–86.CrossRefGoogle Scholar
  32. 32.
    Zabet-Moghaddam M, Heinzle E, Tholey A. Qualitative and quantitative analysis of low molecular weight compounds by ultraviolet matrix-assisted laser desorption/ionization mass spectrometry using ionic liquid matrices. Rapid Commun Mass Spectrom. 2004;18:141–8.CrossRefGoogle Scholar
  33. 33.
    Crank JA, Armstrong DW. Towards a second generation of ionic liquid matrices (ILMs) for MALDI-MS of peptides, proteins, and carbohydrates. J Am Soc Mass Spectrom. 2009;20:1790–800.CrossRefGoogle Scholar
  34. 34.
    Ullmer R, Rizzi AM. Use of a novel ionic liquid matrix for MALDI-MS analysis of glycopeptides and glycans out of total tryptic digests. J Mass Spectrom JMS. 2009;44:1596–603.CrossRefGoogle Scholar
  35. 35.
    Shrivas K, Tapadia K. Ionic liquid matrix-based dispersive liquid–liquid microextraction for enhanced MALDI–MS analysis of phospholipids in soybean. J Chromatogr B. 2015;1001:124–30.CrossRefGoogle Scholar
  36. 36.
    Lemaire R, Tabet JC, Ducoroy P, Hendra JB, Salzet M, Fournier I. Solid ionic matrixes for direct tissue analysis and MALDI imaging. Anal Chem. 2006;78:809–19.CrossRefGoogle Scholar
  37. 37.
    Li YL, Gross ML, Hsu F-F. Ionic-liquid matrices for improved analysis of phospholipids by MALDI-TOF mass spectrometry. J Am Soc Mass Spectrom. 2005;16:679–82.CrossRefGoogle Scholar
  38. 38.
    Bungert D, Bastian S, Heckmann-Pohl DM, Giffhorn F, Heinzle E, Tholey A. Screening of sugar converting enzymes using quantitative MALDI-ToF mass spectrometry. Biotechnol Lett. 2004;26:1025–30.CrossRefGoogle Scholar
  39. 39.
    Leipert J, Treitz C, Leippe M, Tholey A. Identification and quantification of N-acyl homoserine lactones involved in bacterial communication by small-scale synthesis of internal standards and matrix-assisted laser desorption/ionization mass spectrometry. J Am Soc Mass Spectrom. 2017;28:2538–47.Google Scholar
  40. 40.
    McIlwain H. 359. The phenazine series. Part VI. Reactions of alkyl phenazonium salts; the phenazyls. J Chem Soc Resumed 1937;1704–1711.Google Scholar
  41. 41.
    Knight M, Hartman PE, Hartman Z, Young VM. A new method of preparation of pyocyanin and demonstration of an unusual bacterial sensitivity. Anal Biochem. 1979;95:19–23.CrossRefGoogle Scholar
  42. 42.
    Cheluvappa R. Standardized chemical synthesis of Pseudomonas aeruginosa pyocyanin. MethodsX. 2014;1:67–73.CrossRefGoogle Scholar
  43. 43.
    Kim Y-W, Sung C, Lee S, Kim K-J, Yang Y-H, Kim B-G, et al. MALDI-MS-based quantitative analysis for ketone containing homoserine lactones in Pseudomonas aeruginosa. Anal Chem. 2015;87:858–63.CrossRefGoogle Scholar
  44. 44.
    Sládková K, Houška J, Havel J. Laser desorption ionization of red phosphorus clusters and their use for mass calibration in time-of-flight mass spectrometry. Rapid Commun Mass Spectrom. 2009;23:3114–8.CrossRefGoogle Scholar
  45. 45.
    Kang M-J, Tholey A, Heinzle E. Quantitation of low molecular mass substrates and products of enzyme catalyzed reactions using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom. 2000;14:1972–8.CrossRefGoogle Scholar
  46. 46.
    Wittmann C, Heinzle E. MALDI-TOF MS for quantification of substrates and products in cultivations of Corynebacterium glutamicum. Biotechnol Bioeng. 2001;72:642–7.CrossRefGoogle Scholar
  47. 47.
    Moree WJ, Phelan VV, Wu C-H, Bandeira N, Cornett DS, Duggan BM, et al. Interkingdom metabolic transformations captured by microbial imaging mass spectrometry. Proc Natl Acad Sci. 2012;109:13811–6.CrossRefGoogle Scholar
  48. 48.
    Tholey A. Ionic liquid matrices with phosphoric acid as matrix additive for the facilitated analysis of phosphopeptides by matrix-assisted laser desorption/ionization mass spectrometry. Rapid Commun Mass Spectrom. 2006;20:1761–8.CrossRefGoogle Scholar
  49. 49.
    Watson D, MacDermot J, Wilson R, Cole PJ, Taylor GW. Purification and structural analysis of pyocyanin and 1-hydroxyphenazine. Eur J Biochem. 1986;159:309–13.CrossRefGoogle Scholar
  50. 50.
    Zgoła-Grześkowiak A, Grześkowiak T. Dispersive liquid-liquid microextraction. TrAC Trends Anal Chem. 2011;30:1382–99.CrossRefGoogle Scholar
  51. 51.
    Mawhinney TP, Chance DL, Waters JK, Mossine VV. Method development for the micromolar analysis of pyocyanin (PYO) in blood and urine via mass spectrometry (MS). FASEB J. 2017;31:658.9.Google Scholar
  52. 52.
    Rippey J, Stallwood M. Nine cases of accidental exposure to dimethyl sulphate—a potential chemical weapon. Emerg Med J EMJ. 2005;22:878–9.CrossRefGoogle Scholar
  53. 53.
    Caldwell CC, Chen Y, Goetzmann HS, Hao Y, Borchers MT, Hassett DJ, et al. Pseudomonas aeruginosa exotoxin pyocyanin causes cystic fibrosis airway pathogenesis. Am J Pathol. 2009;175:2473–88.CrossRefGoogle Scholar
  54. 54.
    Moreau-Marquis S, Stanton BA, O’Toole GA. Pseudomonas aeruginosa biofilm formation in the cystic fibrosis airway. Pulm Pharmacol Ther. 2008;21:595–9.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Jan Leipert
    • 1
  • Ingrid Bobis
    • 2
  • Sabine Schubert
    • 3
  • Helmut Fickenscher
    • 3
  • Matthias Leippe
    • 4
  • Andreas Tholey
    • 1
  1. 1.Systematic Proteome Research & Bioanalytics, Institute for Experimental MedicineUniversity of KielKielGermany
  2. 2.Department of Internal MedicineUniversity Hospital Schleswig-HolsteinKielGermany
  3. 3.Institute for Infection MedicineUniversity of Kiel and University Hospital Schleswig-HolsteinKielGermany
  4. 4.Zoological Institute, Comparative ImmunobiologyUniversity of KielKielGermany

Personalised recommendations